[Gridflow-cvs] [svn] commit: r5759 - in /trunk/doc: moulinette.tcl numop.pd

svn-gridflow at artengine.ca svn-gridflow at artengine.ca
Thu Jul 22 23:22:36 EDT 2010


Author: matju
Date: Thu Jul 22 23:22:33 2010
New Revision: 5759

Log:
a bit narrower

Modified:
    trunk/doc/moulinette.tcl
    trunk/doc/numop.pd

Modified: trunk/doc/moulinette.tcl
==============================================================================
--- trunk/doc/moulinette.tcl (original)
+++ trunk/doc/moulinette.tcl Thu Jul 22 23:22:33 2010
@@ -9,28 +9,29 @@
 	regsub -all "\\$" $v "\\$" v
 	puts $::fh "$v;"
 }
-set oid 0
 proc obj  {args} {write [concat [list #X obj ] $args]; incr ::oid}
 proc msg  {args} {write [concat [list #X msg ] $args]; incr ::oid}
 proc text {args} {write [concat [list #X text] $args]; incr ::oid}
 
 set fh [open numop.pd w]
 write [list #N canvas 0 0 1024 768 10]
-set y 0
+write [list #X obj 0 0 doc_demo]
+set oid 1
+set y 30
 set row 0
 set msgboxes {}
 set col1 96
-set col2 512
-set col3 768
-set col4 1024
-set rowsize 32
+set col2 [expr $col1+350]
+set col3 [expr $col2+250]
+set col4 [expr $col3+250]
+set rowsize 28
 
 obj 0 $y cnv 15 $col4 30 empty empty empty 20 12 0 14 20 -66577 0
 text 10 $y op name
 text $col1 $y description
 text $col2 $y "effect on pixels"
 text $col3 $y "effect on coords"
-incr y 32
+incr y $rowsize
 
 # onpixels = meaning in pixel context (pictures, palettes)
 # oncoords = meaning in spatial context (indexmaps, polygons)
@@ -45,7 +46,7 @@
 	lappend ::msgboxes $::oid
 	set x 10
 	foreach op1 $op {msg $x $y op $op; incr 50}
-	text $::col1 $y $desc
+	text $::col1 [expr {$y-2}] $desc
 	if {$extra1 != ""} {text $::col2 $y $extra1}
 	if {$extra2 != ""} {text $::col3 $y $extra2}
 	incr ::row
@@ -53,9 +54,10 @@
 }
 
 proc draw_columns {} {
-	obj [expr $::col1-1] 0 cnv 0 0 $::y empty empty empty -1 12 0 14 0 -66577 0
-	obj [expr $::col2-1] 0 cnv 0 0 $::y empty empty empty -1 12 0 14 0 -66577 0
-	obj [expr $::col3-1] 0 cnv 0 0 $::y empty empty empty -1 12 0 14 0 -66577 0
+	set y 30
+	obj [expr $::col1-1] $y cnv 0 0 $::y empty empty empty -1 12 0 14 0 -66577 0
+	obj [expr $::col2-1] $y cnv 0 0 $::y empty empty empty -1 12 0 14 0 -66577 0
+	obj [expr $::col3-1] $y cnv 0 0 $::y empty empty empty -1 12 0 14 0 -66577 0
 }
 
 proc numbertype {op desc {extra1 ""} {extra2 ""}} {op $op $desc $extra1 $extra2}
@@ -93,7 +95,7 @@
 op {&&} { if A is zero then zero else B}
 op {min} { the lowest value in A,B } {clipping} {clipping (of individual points)}
 op {max} { the highest value in A,B } {clipping} {clipping (of individual points)}
-op {cmp} { -1 when A<B; 0 when A=B; 1 when A>B. }
+op {cmp} { -1 when A<B; 0 when A=B; 1 when A>B. }
 op {==} { is A equal to B ? 1=true, 0=false }
 op {!=} { is A not equal to B ? }
 op {>} { is A greater than B ? }
@@ -148,13 +150,13 @@
 
 foreach msgbox $msgboxes {write [list #X connect $msgbox 0 $outletid 0]}
 
-draw_columns
-
 foreach section $sections {
 	mset {y1 desc} $section
 	obj 0 $y1 cnv 15 $::col4 18 empty empty empty 20 12 0 14 -248881 -66577 0
 	text 10 $y1 $desc
 }
+
+draw_columns
 
 p {
 	note: a centidegree is 0.01 degree. There are 36000 centidegrees in a circle.

Modified: trunk/doc/numop.pd
==============================================================================
--- trunk/doc/numop.pd (original)
+++ trunk/doc/numop.pd Thu Jul 22 23:22:33 2010
@@ -1,330 +1,331 @@
 #N canvas 0 0 1024 768 10;
-#X obj 0 0 cnv 15 1024 30 empty empty empty 20 12 0 14 20 -66577 0;
-#X text 10 0 op name;
-#X text 96 0 description;
-#X text 512 0 effect on pixels;
-#X text 768 0 effect on coords;
-#X obj 0 52 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 52 op ignore;
-#X text 96 52  A ;
-#X text 512 52 no effect;
-#X text 768 52 no effect;
-#X obj 0 84 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 84 op put;
-#X text 96 84  B ;
-#X text 512 84 replace by;
-#X text 768 84 replace by;
-#X obj 0 116 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 116 op +;
-#X text 96 116  A + B ;
-#X text 512 116 brightness \,  crossfade;
-#X text 768 116 move \,  morph;
-#X obj 0 148 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 148 op -;
-#X text 96 148  A - B ;
-#X text 512 148 brightness \,  motion detection;
-#X text 768 148 move \,  motion detection;
-#X obj 0 180 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 180 op inv+;
-#X text 96 180  B - A ;
-#X text 512 180 negate then contrast;
-#X text 768 180 180 degree rotate then move;
-#X obj 0 212 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 212 op *;
-#X text 96 212  A * B ;
-#X text 512 212 contrast;
-#X text 768 212 zoom out;
-#X obj 0 244 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 244 op *>>8;
+#X obj 0 0 doc_demo;
+#X obj 0 30 cnv 15 946 30 empty empty empty 20 12 0 14 20 -66577 0;
+#X text 10 30 op name;
+#X text 96 30 description;
+#X text 446 30 effect on pixels;
+#X text 696 30 effect on coords;
+#X obj 0 78 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 78 op ignore;
+#X text 96 76  A ;
+#X text 446 78 no effect;
+#X text 696 78 no effect;
+#X obj 0 106 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 106 op put;
+#X text 96 104  B ;
+#X text 446 106 replace by;
+#X text 696 106 replace by;
+#X obj 0 134 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 134 op +;
+#X text 96 132  A + B ;
+#X text 446 134 brightness \,  crossfade;
+#X text 696 134 move \,  morph;
+#X obj 0 162 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 162 op -;
+#X text 96 160  A - B ;
+#X text 446 162 brightness \,  motion detection;
+#X text 696 162 move \,  motion detection;
+#X obj 0 190 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 190 op inv+;
+#X text 96 188  B - A ;
+#X text 446 190 negate then contrast;
+#X text 696 190 180 degree rotate then move;
+#X obj 0 218 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 218 op *;
+#X text 96 216  A * B ;
+#X text 446 218 contrast;
+#X text 696 218 zoom out;
+#X obj 0 246 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 246 op *>>8;
 #X text 96 244  (A * B) >> 8 ;
-#X text 512 244 contrast;
-#X text 768 244 zoom out;
-#X obj 0 276 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 276 op /;
-#X text 96 276  A / B \,  rounded towards zero ;
-#X text 512 276 contrast;
-#X text 768 276 zoom in;
-#X obj 0 308 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 308 op div;
-#X text 96 308  A / B \,  rounded downwards ;
-#X text 512 308 contrast;
-#X text 768 308 zoom in;
-#X obj 0 340 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 340 op inv*;
-#X text 96 340  B / A \,  rounded towards zero ;
-#X obj 0 372 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 372 op swapdiv;
-#X text 96 372  B / A \,  rounded downwards ;
-#X obj 0 404 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 404 op %;
-#X text 96 404  A % B \,  modulo (goes with div) ;
-#X text 512 404 --;
-#X text 768 404 tile;
-#X obj 0 436 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 436 op swap%;
-#X text 96 436  B % A \,  modulo (goes with div) ;
-#X obj 0 468 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 468 op rem;
-#X text 96 468  A % B \,  remainder (goes with /) ;
-#X obj 0 500 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 500 op swaprem;
-#X text 96 500  B % A \,  remainder (goes with /) ;
-#X obj 0 532 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 532 op gcd;
-#X text 96 532 greatest common divisor;
-#X obj 0 564 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 564 op lcm;
-#X text 96 564 least common multiple;
-#X obj 0 596 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 596 op |;
-#X text 96 596  A or B \,  bitwise ;
-#X text 512 596 bright munchies;
-#X text 768 596 bottomright munchies;
-#X obj 0 628 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 628 op ^;
-#X text 96 628  A xor B \,  bitwise ;
-#X text 512 628 symmetric munchies (fractal checkers);
-#X text 768 628 symmetric munchies (fractal checkers);
-#X obj 0 660 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 660 op &;
-#X text 96 660  A and B \,  bitwise ;
-#X text 512 660 dark munchies;
-#X text 768 660 topleft munchies;
-#X obj 0 692 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 692 op <<;
-#X text 96 692  A * (2**(B % 32)) \,  which is left-shifting ;
-#X text 512 692 like *;
-#X text 768 692 like *;
-#X obj 0 724 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 724 op >>;
-#X text 96 724  A / (2**(B % 32)) \,  which is right-shifting ;
-#X text 512 724 like / \, div;
-#X text 768 724 like / \, div;
-#X obj 0 756 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 756 op ||;
-#X text 96 756  if A is zero then B else A ;
-#X obj 0 788 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 788 op &&;
-#X text 96 788  if A is zero then zero else B;
-#X obj 0 820 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 820 op min;
-#X text 96 820  the lowest value in A \, B ;
-#X text 512 820 clipping;
-#X text 768 820 clipping (of individual points);
-#X obj 0 852 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 852 op max;
-#X text 96 852  the highest value in A \, B ;
-#X text 512 852 clipping;
-#X text 768 852 clipping (of individual points);
-#X obj 0 884 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 884 op cmp;
-#X text 96 884  -1 when A&lt \; B \;  0 when A=B \;  1 when A&gt \; B. ;
-#X obj 0 916 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 916 op ==;
-#X text 96 916  is A equal to B ? 1=true \,  0=false ;
-#X obj 0 948 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 948 op !=;
-#X text 96 948  is A not equal to B ? ;
-#X obj 0 980 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 980 op >;
-#X text 96 980  is A greater than B ? ;
-#X obj 0 1012 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1012 op <=;
-#X text 96 1012  is A not greater than B ? ;
-#X obj 0 1044 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1044 op <;
-#X text 96 1044  is A less than B ? ;
-#X obj 0 1076 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1076 op >=;
-#X text 96 1076 is A not less than B ? ;
-#X obj 0 1108 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1108 op sin*;
-#X text 96 1108  B * sin(A) in centidegrees ;
-#X text 512 1108 --;
-#X text 768 1108 waves \,  rotations;
-#X obj 0 1140 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1140 op cos*;
-#X text 96 1140  B * cos(A) in centidegrees ;
-#X text 512 1140 --;
-#X text 768 1140 waves \,  rotations;
-#X obj 0 1172 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1172 op atan;
-#X text 96 1172  arctan(A/B) in centidegrees ;
-#X text 512 1172 --;
-#X text 768 1172 find angle to origin (part of polar transform);
-#X obj 0 1204 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1204 op tanh*;
-#X text 96 1204  B * tanh(A) in centidegrees ;
-#X text 512 1204 smooth clipping;
-#X text 768 1204 smooth clipping (of individual points) \,  neural sigmoid \,  fuzzy logic;
-#X obj 0 1236 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1236 op log*;
-#X text 96 1236  B * log(A) (in base e) ;
-#X obj 0 1268 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1268 op gamma;
-#X text 96 1268  floor(pow(a/256.0 \, 256.0/b)*256.0) ;
-#X text 512 1268 gamma correction;
-#X obj 0 1300 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1300 op **;
-#X text 96 1300  A**B \,  that is \,  A raised to power B ;
-#X text 512 1300 gamma correction;
-#X obj 0 1332 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1332 op abs-;
-#X text 96 1332  absolute value of (A-B) ;
-#X obj 0 1364 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1364 op rand;
-#X text 96 1364  randomly produces a non-negative number below A ;
-#X obj 0 1396 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1396 op sqrt;
-#X text 96 1396  square root of A \,  rounded downwards ;
-#X obj 0 1428 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1428 op sq-;
-#X text 96 1428  (A-B) times (A-B) ;
-#X obj 0 1460 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1460 op avg;
-#X text 96 1460  (A+B)/2 ;
-#X obj 0 1492 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1492 op hypot;
-#X text 96 1492  distance function: square root of (A*A+B*B) ;
-#X obj 0 1524 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1524 op clip+;
-#X text 96 1524  like A+B but overflow causes clipping instead of wrapping around (coming soon) ;
-#X obj 0 1556 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1556 op clip-;
-#X text 96 1556  like A-B but overflow causes clipping instead of wrapping around (coming soon) ;
-#X obj 0 1588 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1588 op erf*;
-#X text 96 1588  integral of e^(-x*x) dx ... (coming soon \;  what ought to be the scaling factor?) ;
-#X obj 0 1620 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1620 op weight;
-#X text 96 1620  number of "1" bits in an integer;
-#X obj 0 1652 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1652 op sin;
-#X text 96 1652 sin(A-B) in radians \,  float only;
-#X obj 0 1684 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1684 op cos;
-#X text 96 1684 cos(A-B) in radians \,  float only;
-#X obj 0 1716 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1716 op atan2;
-#X text 96 1716 atan2(A \, B) in radians \,  float only;
-#X obj 0 1748 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1748 op tanh;
-#X text 96 1748 tanh(A-B) in radians \,  float only;
-#X obj 0 1780 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1780 op exp;
-#X text 96 1780 exp(A-B) in radians \,  float only;
-#X obj 0 1812 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1812 op log;
-#X text 96 1812 log(A-B) in radians \,  float only;
-#X obj 0 1864 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1864 op C.*    ;
-#X text 96 1864 A*B;
-#X obj 0 1896 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1896 op C.*conj;
-#X text 96 1896 A*conj(B);
-#X obj 0 1928 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1928 op C./    ;
-#X text 96 1928 A/B;
-#X obj 0 1960 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1960 op C./conj;
-#X text 96 1960 A/conj(B);
-#X obj 0 1992 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1992 op C.sq-  ;
-#X text 96 1992 (A-B)*(A-B);
-#X obj 0 2024 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 2024 op C.abs- ;
-#X text 96 2024 abs(A-B);
-#X obj 0 2056 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 2056 op C.sin  ;
-#X text 96 2056 sin(A-B);
-#X obj 0 2088 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 2088 op C.cos  ;
-#X text 96 2088 cos(A-B);
-#X obj 0 2120 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 2120 op C.tanh ;
-#X text 96 2120 tanh(A-B);
-#X obj 0 2152 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 2152 op C.exp  ;
-#X text 96 2152 exp(A-B);
-#X obj 0 2184 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 2184 op C.log  ;
-#X text 96 2184 log(A-B);
-#X obj 10 2226 outlet;
-#X connect 6 0 250 0;
-#X connect 11 0 250 0;
-#X connect 16 0 250 0;
-#X connect 21 0 250 0;
-#X connect 26 0 250 0;
-#X connect 31 0 250 0;
-#X connect 36 0 250 0;
-#X connect 41 0 250 0;
-#X connect 46 0 250 0;
-#X connect 51 0 250 0;
-#X connect 54 0 250 0;
-#X connect 57 0 250 0;
-#X connect 62 0 250 0;
-#X connect 65 0 250 0;
-#X connect 68 0 250 0;
-#X connect 71 0 250 0;
-#X connect 74 0 250 0;
-#X connect 77 0 250 0;
-#X connect 82 0 250 0;
-#X connect 87 0 250 0;
-#X connect 92 0 250 0;
-#X connect 97 0 250 0;
-#X connect 102 0 250 0;
-#X connect 105 0 250 0;
-#X connect 108 0 250 0;
-#X connect 113 0 250 0;
-#X connect 118 0 250 0;
-#X connect 121 0 250 0;
-#X connect 124 0 250 0;
-#X connect 127 0 250 0;
-#X connect 130 0 250 0;
-#X connect 133 0 250 0;
-#X connect 136 0 250 0;
-#X connect 139 0 250 0;
-#X connect 144 0 250 0;
-#X connect 149 0 250 0;
-#X connect 154 0 250 0;
-#X connect 159 0 250 0;
-#X connect 162 0 250 0;
-#X connect 166 0 250 0;
-#X connect 170 0 250 0;
-#X connect 173 0 250 0;
-#X connect 176 0 250 0;
-#X connect 179 0 250 0;
-#X connect 182 0 250 0;
-#X connect 185 0 250 0;
-#X connect 188 0 250 0;
-#X connect 191 0 250 0;
-#X connect 194 0 250 0;
-#X connect 197 0 250 0;
-#X connect 200 0 250 0;
-#X connect 203 0 250 0;
-#X connect 206 0 250 0;
-#X connect 209 0 250 0;
-#X connect 212 0 250 0;
-#X connect 215 0 250 0;
-#X connect 218 0 250 0;
-#X connect 221 0 250 0;
-#X connect 224 0 250 0;
-#X connect 227 0 250 0;
-#X connect 230 0 250 0;
-#X connect 233 0 250 0;
-#X connect 236 0 250 0;
-#X connect 239 0 250 0;
-#X connect 242 0 250 0;
-#X connect 245 0 250 0;
-#X connect 248 0 250 0;
-#X obj 95 0 cnv 0 0 2246 empty empty empty -1 12 0 14 0 -66577 0;
-#X obj 511 0 cnv 0 0 2246 empty empty empty -1 12 0 14 0 -66577 0;
-#X obj 767 0 cnv 0 0 2246 empty empty empty -1 12 0 14 0 -66577 0;
-#X obj 0 32 cnv 15 1024 18 empty empty empty 20 12 0 14 -248881 -66577 0;
-#X text 10 32 numops;
-#X obj 0 1844 cnv 15 1024 18 empty empty empty 20 12 0 14 -248881 -66577 0;
-#X text 10 1844 vecops for complex numbers;
-#X text 10 2246 
+#X text 446 246 contrast;
+#X text 696 246 zoom out;
+#X obj 0 274 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 274 op /;
+#X text 96 272  A / B \,  rounded towards zero ;
+#X text 446 274 contrast;
+#X text 696 274 zoom in;
+#X obj 0 302 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 302 op div;
+#X text 96 300  A / B \,  rounded downwards ;
+#X text 446 302 contrast;
+#X text 696 302 zoom in;
+#X obj 0 330 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 330 op inv*;
+#X text 96 328  B / A \,  rounded towards zero ;
+#X obj 0 358 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 358 op swapdiv;
+#X text 96 356  B / A \,  rounded downwards ;
+#X obj 0 386 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 386 op %;
+#X text 96 384  A % B \,  modulo (goes with div) ;
+#X text 446 386 --;
+#X text 696 386 tile;
+#X obj 0 414 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 414 op swap%;
+#X text 96 412  B % A \,  modulo (goes with div) ;
+#X obj 0 442 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 442 op rem;
+#X text 96 440  A % B \,  remainder (goes with /) ;
+#X obj 0 470 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 470 op swaprem;
+#X text 96 468  B % A \,  remainder (goes with /) ;
+#X obj 0 498 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 498 op gcd;
+#X text 96 496 greatest common divisor;
+#X obj 0 526 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 526 op lcm;
+#X text 96 524 least common multiple;
+#X obj 0 554 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 554 op |;
+#X text 96 552  A or B \,  bitwise ;
+#X text 446 554 bright munchies;
+#X text 696 554 bottomright munchies;
+#X obj 0 582 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 582 op ^;
+#X text 96 580  A xor B \,  bitwise ;
+#X text 446 582 symmetric munchies (fractal checkers);
+#X text 696 582 symmetric munchies (fractal checkers);
+#X obj 0 610 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 610 op &;
+#X text 96 608  A and B \,  bitwise ;
+#X text 446 610 dark munchies;
+#X text 696 610 topleft munchies;
+#X obj 0 638 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 638 op <<;
+#X text 96 636  A * (2**(B % 32)) \,  which is left-shifting ;
+#X text 446 638 like *;
+#X text 696 638 like *;
+#X obj 0 666 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 666 op >>;
+#X text 96 664  A / (2**(B % 32)) \,  which is right-shifting ;
+#X text 446 666 like / \, div;
+#X text 696 666 like / \, div;
+#X obj 0 694 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 694 op ||;
+#X text 96 692  if A is zero then B else A ;
+#X obj 0 722 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 722 op &&;
+#X text 96 720  if A is zero then zero else B;
+#X obj 0 750 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 750 op min;
+#X text 96 748  the lowest value in A \, B ;
+#X text 446 750 clipping;
+#X text 696 750 clipping (of individual points);
+#X obj 0 778 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 778 op max;
+#X text 96 776  the highest value in A \, B ;
+#X text 446 778 clipping;
+#X text 696 778 clipping (of individual points);
+#X obj 0 806 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 806 op cmp;
+#X text 96 804  -1 when A<B \;  0 when A=B \;  1 when A>B. ;
+#X obj 0 834 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 834 op ==;
+#X text 96 832  is A equal to B ? 1=true \,  0=false ;
+#X obj 0 862 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 862 op !=;
+#X text 96 860  is A not equal to B ? ;
+#X obj 0 890 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 890 op >;
+#X text 96 888  is A greater than B ? ;
+#X obj 0 918 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 918 op <=;
+#X text 96 916  is A not greater than B ? ;
+#X obj 0 946 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 946 op <;
+#X text 96 944  is A less than B ? ;
+#X obj 0 974 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 974 op >=;
+#X text 96 972 is A not less than B ? ;
+#X obj 0 1002 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1002 op sin*;
+#X text 96 1000  B * sin(A) in centidegrees ;
+#X text 446 1002 --;
+#X text 696 1002 waves \,  rotations;
+#X obj 0 1030 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1030 op cos*;
+#X text 96 1028  B * cos(A) in centidegrees ;
+#X text 446 1030 --;
+#X text 696 1030 waves \,  rotations;
+#X obj 0 1058 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1058 op atan;
+#X text 96 1056  arctan(A/B) in centidegrees ;
+#X text 446 1058 --;
+#X text 696 1058 find angle to origin (part of polar transform);
+#X obj 0 1086 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1086 op tanh*;
+#X text 96 1084  B * tanh(A) in centidegrees ;
+#X text 446 1086 smooth clipping;
+#X text 696 1086 smooth clipping (of individual points) \,  neural sigmoid \,  fuzzy logic;
+#X obj 0 1114 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1114 op log*;
+#X text 96 1112  B * log(A) (in base e) ;
+#X obj 0 1142 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1142 op gamma;
+#X text 96 1140  floor(pow(a/256.0 \, 256.0/b)*256.0) ;
+#X text 446 1142 gamma correction;
+#X obj 0 1170 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1170 op **;
+#X text 96 1168  A**B \,  that is \,  A raised to power B ;
+#X text 446 1170 gamma correction;
+#X obj 0 1198 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1198 op abs-;
+#X text 96 1196  absolute value of (A-B) ;
+#X obj 0 1226 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1226 op rand;
+#X text 96 1224  randomly produces a non-negative number below A ;
+#X obj 0 1254 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1254 op sqrt;
+#X text 96 1252  square root of A \,  rounded downwards ;
+#X obj 0 1282 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1282 op sq-;
+#X text 96 1280  (A-B) times (A-B) ;
+#X obj 0 1310 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1310 op avg;
+#X text 96 1308  (A+B)/2 ;
+#X obj 0 1338 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1338 op hypot;
+#X text 96 1336  distance function: square root of (A*A+B*B) ;
+#X obj 0 1366 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1366 op clip+;
+#X text 96 1364  like A+B but overflow causes clipping instead of wrapping around (coming soon) ;
+#X obj 0 1394 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1394 op clip-;
+#X text 96 1392  like A-B but overflow causes clipping instead of wrapping around (coming soon) ;
+#X obj 0 1422 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1422 op erf*;
+#X text 96 1420  integral of e^(-x*x) dx ... (coming soon \;  what ought to be the scaling factor?) ;
+#X obj 0 1450 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1450 op weight;
+#X text 96 1448  number of "1" bits in an integer;
+#X obj 0 1478 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1478 op sin;
+#X text 96 1476 sin(A-B) in radians \,  float only;
+#X obj 0 1506 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1506 op cos;
+#X text 96 1504 cos(A-B) in radians \,  float only;
+#X obj 0 1534 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1534 op atan2;
+#X text 96 1532 atan2(A \, B) in radians \,  float only;
+#X obj 0 1562 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1562 op tanh;
+#X text 96 1560 tanh(A-B) in radians \,  float only;
+#X obj 0 1590 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1590 op exp;
+#X text 96 1588 exp(A-B) in radians \,  float only;
+#X obj 0 1618 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1618 op log;
+#X text 96 1616 log(A-B) in radians \,  float only;
+#X obj 0 1666 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1666 op C.*    ;
+#X text 96 1664 A*B;
+#X obj 0 1694 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1694 op C.*conj;
+#X text 96 1692 A*conj(B);
+#X obj 0 1722 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1722 op C./    ;
+#X text 96 1720 A/B;
+#X obj 0 1750 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1750 op C./conj;
+#X text 96 1748 A/conj(B);
+#X obj 0 1778 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1778 op C.sq-  ;
+#X text 96 1776 (A-B)*(A-B);
+#X obj 0 1806 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1806 op C.abs- ;
+#X text 96 1804 abs(A-B);
+#X obj 0 1834 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1834 op C.sin  ;
+#X text 96 1832 sin(A-B);
+#X obj 0 1862 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1862 op C.cos  ;
+#X text 96 1860 cos(A-B);
+#X obj 0 1890 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1890 op C.tanh ;
+#X text 96 1888 tanh(A-B);
+#X obj 0 1918 cnv 15 946 26 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1918 op C.exp  ;
+#X text 96 1916 exp(A-B);
+#X obj 0 1946 cnv 15 946 26 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1946 op C.log  ;
+#X text 96 1944 log(A-B);
+#X obj 10 1984 outlet;
+#X connect 7 0 251 0;
+#X connect 12 0 251 0;
+#X connect 17 0 251 0;
+#X connect 22 0 251 0;
+#X connect 27 0 251 0;
+#X connect 32 0 251 0;
+#X connect 37 0 251 0;
+#X connect 42 0 251 0;
+#X connect 47 0 251 0;
+#X connect 52 0 251 0;
+#X connect 55 0 251 0;
+#X connect 58 0 251 0;
+#X connect 63 0 251 0;
+#X connect 66 0 251 0;
+#X connect 69 0 251 0;
+#X connect 72 0 251 0;
+#X connect 75 0 251 0;
+#X connect 78 0 251 0;
+#X connect 83 0 251 0;
+#X connect 88 0 251 0;
+#X connect 93 0 251 0;
+#X connect 98 0 251 0;
+#X connect 103 0 251 0;
+#X connect 106 0 251 0;
+#X connect 109 0 251 0;
+#X connect 114 0 251 0;
+#X connect 119 0 251 0;
+#X connect 122 0 251 0;
+#X connect 125 0 251 0;
+#X connect 128 0 251 0;
+#X connect 131 0 251 0;
+#X connect 134 0 251 0;
+#X connect 137 0 251 0;
+#X connect 140 0 251 0;
+#X connect 145 0 251 0;
+#X connect 150 0 251 0;
+#X connect 155 0 251 0;
+#X connect 160 0 251 0;
+#X connect 163 0 251 0;
+#X connect 167 0 251 0;
+#X connect 171 0 251 0;
+#X connect 174 0 251 0;
+#X connect 177 0 251 0;
+#X connect 180 0 251 0;
+#X connect 183 0 251 0;
+#X connect 186 0 251 0;
+#X connect 189 0 251 0;
+#X connect 192 0 251 0;
+#X connect 195 0 251 0;
+#X connect 198 0 251 0;
+#X connect 201 0 251 0;
+#X connect 204 0 251 0;
+#X connect 207 0 251 0;
+#X connect 210 0 251 0;
+#X connect 213 0 251 0;
+#X connect 216 0 251 0;
+#X connect 219 0 251 0;
+#X connect 222 0 251 0;
+#X connect 225 0 251 0;
+#X connect 228 0 251 0;
+#X connect 231 0 251 0;
+#X connect 234 0 251 0;
+#X connect 237 0 251 0;
+#X connect 240 0 251 0;
+#X connect 243 0 251 0;
+#X connect 246 0 251 0;
+#X connect 249 0 251 0;
+#X obj 0 58 cnv 15 946 18 empty empty empty 20 12 0 14 -248881 -66577 0;
+#X text 10 58 numops;
+#X obj 0 1646 cnv 15 946 18 empty empty empty 20 12 0 14 -248881 -66577 0;
+#X text 10 1646 vecops for complex numbers;
+#X obj 95 30 cnv 0 0 2004 empty empty empty -1 12 0 14 0 -66577 0;
+#X obj 445 30 cnv 0 0 2004 empty empty empty -1 12 0 14 0 -66577 0;
+#X obj 695 30 cnv 0 0 2004 empty empty empty -1 12 0 14 0 -66577 0;
+#X text 10 2004 
 	note: a centidegree is 0.01 degree. There are 36000 centidegrees in a circle.
         Some angle operators use centidegrees \,  while some others use radians. To
         convert degrees into centidegrees \,  multiply by 100.



More information about the Gridflow-cvs mailing list