[Gridflow-cvs] [svn] commit: r4220 - in /trunk/doc: moulinette.tcl numop.pd

gridflow-cvs at artengine.ca gridflow-cvs at artengine.ca
Fri Oct 16 13:39:47 EDT 2009


Author: matju
Date: Fri Oct 16 13:39:47 2009
New Revision: 4220

Log:
some small fixes

Modified:
    trunk/doc/moulinette.tcl
    trunk/doc/numop.pd

Modified: trunk/doc/moulinette.tcl
==============================================================================
--- trunk/doc/moulinette.tcl (original)
+++ trunk/doc/moulinette.tcl Fri Oct 16 13:39:47 2009
@@ -26,7 +26,7 @@
 set rowsize 32
 
 obj 0 $y cnv 15 $col4 30 empty empty empty 20 12 0 14 20 -66577 0
-text 0 10 $y op name
+text 10 $y op name
 text $col1 $y description
 text $col2 $y "effect on pixels"
 text $col3 $y "effect on coords"
@@ -61,9 +61,8 @@
 
 set sections {}
 proc section {desc} {
-	global y
-	lappend ::sections [list $y $desc]
-	incr ::y 16
+	lappend ::sections [list $::y $desc]
+	incr ::y 20
 }
 
 section {numops}
@@ -111,7 +110,7 @@
 op {sqrt} { square root of A, rounded downwards }
 op {sq-} { (A-B) times (A-B) }
 op {avg} { (A+B)/2 }
-op {hypot} { square root of (A*A+B*B) }
+op {hypot} { distance function: square root of (A*A+B*B) }
 op {clip+} { like A+B but overflow causes clipping instead of wrapping around (coming soon) }
 op {clip-} { like A-B but overflow causes clipping instead of wrapping around (coming soon) }
 op {erf*} { integral of e^(-x*x) dx ... (coming soon; what ought to be the scaling factor?) }
@@ -136,6 +135,10 @@
 op {C.exp  } {exp(A-B)}
 op {C.log  } {log(A-B)}
 
+#section {vecops for other things}
+#op {cart2pol}
+#op {pol2cart}
+
 incr y 10
 set outletid $oid
 obj 10 $y outlet
@@ -147,7 +150,7 @@
 
 foreach section $sections {
 	mset {y1 desc} $section
-	obj 0 $y1 cnv 15 $::col4 14 empty empty empty 20 12 0 14 -248881 -66577 0
+	obj 0 $y1 cnv 15 $::col4 18 empty empty empty 20 12 0 14 -248881 -66577 0
 	text 10 $y1 $desc
 }
 

Modified: trunk/doc/numop.pd
==============================================================================
--- trunk/doc/numop.pd (original)
+++ trunk/doc/numop.pd Fri Oct 16 13:39:47 2009
@@ -1,250 +1,250 @@
 #N canvas 0 0 1024 768 10;
 #X obj 0 0 cnv 15 1024 30 empty empty empty 20 12 0 14 20 -66577 0;
-#X text 0 10 0 op name;
+#X text 10 0 op name;
 #X text 96 0 description;
 #X text 512 0 effect on pixels;
 #X text 768 0 effect on coords;
-#X obj 0 48 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 48 op ignore;
-#X text 96 48  A ;
-#X text 512 48 no effect;
-#X text 768 48 no effect;
-#X obj 0 80 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 80 op put;
-#X text 96 80  B ;
-#X text 512 80 replace by;
-#X text 768 80 replace by;
-#X obj 0 112 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 112 op +;
-#X text 96 112  A + B ;
-#X text 512 112 brightness \,  crossfade;
-#X text 768 112 move \,  morph;
-#X obj 0 144 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 144 op -;
-#X text 96 144  A - B ;
-#X text 512 144 brightness \,  motion detection;
-#X text 768 144 move \,  motion detection;
-#X obj 0 176 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 176 op inv+;
-#X text 96 176  B - A ;
-#X text 512 176 negate then contrast;
-#X text 768 176 180 degree rotate then move;
-#X obj 0 208 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 208 op *;
-#X text 96 208  A * B ;
-#X text 512 208 contrast;
-#X text 768 208 zoom out;
-#X obj 0 240 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 240 op /;
-#X text 96 240  A / B \,  rounded towards zero ;
-#X text 512 240 contrast;
-#X text 768 240 zoom in;
-#X obj 0 272 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 272 op div;
-#X text 96 272  A / B \,  rounded downwards ;
-#X text 512 272 contrast;
-#X text 768 272 zoom in;
-#X obj 0 304 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 304 op inv*;
-#X text 96 304  B / A \,  rounded towards zero ;
-#X obj 0 336 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 336 op swapdiv;
-#X text 96 336  B / A \,  rounded downwards ;
-#X obj 0 368 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 368 op %;
-#X text 96 368  A % B \,  modulo (goes with div) ;
-#X text 512 368 --;
-#X text 768 368 tile;
-#X obj 0 400 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 400 op swap%;
-#X text 96 400  B % A \,  modulo (goes with div) ;
-#X obj 0 432 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 432 op rem;
-#X text 96 432  A % B \,  remainder (goes with /) ;
-#X obj 0 464 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 464 op swaprem;
-#X text 96 464  B % A \,  remainder (goes with /) ;
-#X obj 0 496 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 496 op gcd;
-#X text 96 496 greatest common divisor;
-#X obj 0 528 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 528 op lcm;
-#X text 96 528 least common multiple;
-#X obj 0 560 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 560 op |;
-#X text 96 560  A or B \,  bitwise ;
-#X text 512 560 bright munchies;
-#X text 768 560 bottomright munchies;
-#X obj 0 592 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 592 op ^;
-#X text 96 592  A xor B \,  bitwise ;
-#X text 512 592 symmetric munchies (fractal checkers);
-#X text 768 592 symmetric munchies (fractal checkers);
-#X obj 0 624 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 624 op &;
-#X text 96 624  A and B \,  bitwise ;
-#X text 512 624 dark munchies;
-#X text 768 624 topleft munchies;
-#X obj 0 656 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 656 op <<;
-#X text 96 656  A * (2**(B % 32)) \,  which is left-shifting ;
-#X text 512 656 like *;
-#X text 768 656 like *;
-#X obj 0 688 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 688 op >>;
-#X text 96 688  A / (2**(B % 32)) \,  which is right-shifting ;
-#X text 512 688 like / \, div;
-#X text 768 688 like / \, div;
-#X obj 0 720 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 720 op ||;
-#X text 96 720  if A is zero then B else A ;
-#X obj 0 752 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 752 op &&;
-#X text 96 752  if A is zero then zero else B;
-#X obj 0 784 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 784 op min;
-#X text 96 784  the lowest value in A \, B ;
-#X text 512 784 clipping;
-#X text 768 784 clipping (of individual points);
-#X obj 0 816 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 816 op max;
-#X text 96 816  the highest value in A \, B ;
-#X text 512 816 clipping;
-#X text 768 816 clipping (of individual points);
-#X obj 0 848 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 848 op cmp;
-#X text 96 848  -1 when A&lt \; B \;  0 when A=B \;  1 when A&gt \; B. ;
-#X obj 0 880 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 880 op ==;
-#X text 96 880  is A equal to B ? 1=true \,  0=false ;
-#X obj 0 912 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 912 op !=;
-#X text 96 912  is A not equal to B ? ;
-#X obj 0 944 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 944 op >;
-#X text 96 944  is A greater than B ? ;
-#X obj 0 976 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 976 op <=;
-#X text 96 976  is A not greater than B ? ;
-#X obj 0 1008 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1008 op <;
-#X text 96 1008  is A less than B ? ;
-#X obj 0 1040 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1040 op >=;
-#X text 96 1040 is A not less than B ? ;
-#X obj 0 1072 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1072 op sin*;
-#X text 96 1072  B * sin(A) in centidegrees ;
-#X text 512 1072 --;
-#X text 768 1072 waves \,  rotations;
-#X obj 0 1104 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1104 op cos*;
-#X text 96 1104  B * cos(A) in centidegrees ;
-#X text 512 1104 --;
-#X text 768 1104 waves \,  rotations;
-#X obj 0 1136 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1136 op atan;
-#X text 96 1136  arctan(A/B) in centidegrees ;
-#X text 512 1136 --;
-#X text 768 1136 find angle to origin (part of polar transform);
-#X obj 0 1168 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1168 op tanh*;
-#X text 96 1168  B * tanh(A) in centidegrees ;
-#X text 512 1168 smooth clipping;
-#X text 768 1168 smooth clipping (of individual points) \,  neural sigmoid \,  fuzzy logic;
-#X obj 0 1200 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1200 op log*;
-#X text 96 1200  B * log(A) (in base e) ;
-#X obj 0 1232 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1232 op gamma;
-#X text 96 1232  floor(pow(a/256.0 \, 256.0/b)*256.0) ;
-#X text 512 1232 gamma correction;
-#X obj 0 1264 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1264 op **;
-#X text 96 1264  A**B \,  that is \,  A raised to power B ;
-#X text 512 1264 gamma correction;
-#X obj 0 1296 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1296 op abs-;
-#X text 96 1296  absolute value of (A-B) ;
-#X obj 0 1328 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1328 op rand;
-#X text 96 1328  randomly produces a non-negative number below A ;
-#X obj 0 1360 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1360 op sqrt;
-#X text 96 1360  square root of A \,  rounded downwards ;
-#X obj 0 1392 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1392 op sq-;
-#X text 96 1392  (A-B) times (A-B) ;
-#X obj 0 1424 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1424 op avg;
-#X text 96 1424  (A+B)/2 ;
-#X obj 0 1456 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1456 op hypot;
-#X text 96 1456  square root of (A*A+B*B) ;
-#X obj 0 1488 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1488 op clip+;
-#X text 96 1488  like A+B but overflow causes clipping instead of wrapping around (coming soon) ;
-#X obj 0 1520 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1520 op clip-;
-#X text 96 1520  like A-B but overflow causes clipping instead of wrapping around (coming soon) ;
-#X obj 0 1552 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1552 op erf*;
-#X text 96 1552  integral of e^(-x*x) dx ... (coming soon \;  what ought to be the scaling factor?) ;
-#X obj 0 1584 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1584 op weight;
-#X text 96 1584  number of "1" bits in an integer;
-#X obj 0 1616 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1616 op sin;
-#X text 96 1616 sin(A-B) in radians \,  float only;
-#X obj 0 1648 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1648 op cos;
-#X text 96 1648 cos(A-B) in radians \,  float only;
-#X obj 0 1680 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1680 op atan2;
-#X text 96 1680 atan2(A \, B) in radians \,  float only;
-#X obj 0 1712 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1712 op tanh;
-#X text 96 1712 tanh(A-B) in radians \,  float only;
-#X obj 0 1744 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1744 op exp;
-#X text 96 1744 exp(A-B) in radians \,  float only;
-#X obj 0 1776 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1776 op log;
-#X text 96 1776 log(A-B) in radians \,  float only;
-#X obj 0 1824 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1824 op C.*    ;
-#X text 96 1824 A*B;
-#X obj 0 1856 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1856 op C.*conj;
-#X text 96 1856 A*conj(B);
-#X obj 0 1888 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1888 op C./    ;
-#X text 96 1888 A/B;
-#X obj 0 1920 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1920 op C./conj;
-#X text 96 1920 A/conj(B);
-#X obj 0 1952 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 1952 op C.sq-  ;
-#X text 96 1952 (A-B)*(A-B);
-#X obj 0 1984 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 1984 op C.abs- ;
-#X text 96 1984 abs(A-B);
-#X obj 0 2016 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 2016 op C.sin  ;
-#X text 96 2016 sin(A-B);
-#X obj 0 2048 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 2048 op C.cos  ;
-#X text 96 2048 cos(A-B);
-#X obj 0 2080 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 2080 op C.tanh ;
-#X text 96 2080 tanh(A-B);
-#X obj 0 2112 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
-#X msg 10 2112 op C.exp  ;
-#X text 96 2112 exp(A-B);
-#X obj 0 2144 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
-#X msg 10 2144 op C.log  ;
-#X text 96 2144 log(A-B);
-#X obj 10 2186 outlet;
+#X obj 0 52 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 52 op ignore;
+#X text 96 52  A ;
+#X text 512 52 no effect;
+#X text 768 52 no effect;
+#X obj 0 84 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 84 op put;
+#X text 96 84  B ;
+#X text 512 84 replace by;
+#X text 768 84 replace by;
+#X obj 0 116 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 116 op +;
+#X text 96 116  A + B ;
+#X text 512 116 brightness \,  crossfade;
+#X text 768 116 move \,  morph;
+#X obj 0 148 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 148 op -;
+#X text 96 148  A - B ;
+#X text 512 148 brightness \,  motion detection;
+#X text 768 148 move \,  motion detection;
+#X obj 0 180 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 180 op inv+;
+#X text 96 180  B - A ;
+#X text 512 180 negate then contrast;
+#X text 768 180 180 degree rotate then move;
+#X obj 0 212 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 212 op *;
+#X text 96 212  A * B ;
+#X text 512 212 contrast;
+#X text 768 212 zoom out;
+#X obj 0 244 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 244 op /;
+#X text 96 244  A / B \,  rounded towards zero ;
+#X text 512 244 contrast;
+#X text 768 244 zoom in;
+#X obj 0 276 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 276 op div;
+#X text 96 276  A / B \,  rounded downwards ;
+#X text 512 276 contrast;
+#X text 768 276 zoom in;
+#X obj 0 308 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 308 op inv*;
+#X text 96 308  B / A \,  rounded towards zero ;
+#X obj 0 340 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 340 op swapdiv;
+#X text 96 340  B / A \,  rounded downwards ;
+#X obj 0 372 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 372 op %;
+#X text 96 372  A % B \,  modulo (goes with div) ;
+#X text 512 372 --;
+#X text 768 372 tile;
+#X obj 0 404 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 404 op swap%;
+#X text 96 404  B % A \,  modulo (goes with div) ;
+#X obj 0 436 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 436 op rem;
+#X text 96 436  A % B \,  remainder (goes with /) ;
+#X obj 0 468 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 468 op swaprem;
+#X text 96 468  B % A \,  remainder (goes with /) ;
+#X obj 0 500 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 500 op gcd;
+#X text 96 500 greatest common divisor;
+#X obj 0 532 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 532 op lcm;
+#X text 96 532 least common multiple;
+#X obj 0 564 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 564 op |;
+#X text 96 564  A or B \,  bitwise ;
+#X text 512 564 bright munchies;
+#X text 768 564 bottomright munchies;
+#X obj 0 596 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 596 op ^;
+#X text 96 596  A xor B \,  bitwise ;
+#X text 512 596 symmetric munchies (fractal checkers);
+#X text 768 596 symmetric munchies (fractal checkers);
+#X obj 0 628 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 628 op &;
+#X text 96 628  A and B \,  bitwise ;
+#X text 512 628 dark munchies;
+#X text 768 628 topleft munchies;
+#X obj 0 660 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 660 op <<;
+#X text 96 660  A * (2**(B % 32)) \,  which is left-shifting ;
+#X text 512 660 like *;
+#X text 768 660 like *;
+#X obj 0 692 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 692 op >>;
+#X text 96 692  A / (2**(B % 32)) \,  which is right-shifting ;
+#X text 512 692 like / \, div;
+#X text 768 692 like / \, div;
+#X obj 0 724 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 724 op ||;
+#X text 96 724  if A is zero then B else A ;
+#X obj 0 756 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 756 op &&;
+#X text 96 756  if A is zero then zero else B;
+#X obj 0 788 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 788 op min;
+#X text 96 788  the lowest value in A \, B ;
+#X text 512 788 clipping;
+#X text 768 788 clipping (of individual points);
+#X obj 0 820 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 820 op max;
+#X text 96 820  the highest value in A \, B ;
+#X text 512 820 clipping;
+#X text 768 820 clipping (of individual points);
+#X obj 0 852 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 852 op cmp;
+#X text 96 852  -1 when A&lt \; B \;  0 when A=B \;  1 when A&gt \; B. ;
+#X obj 0 884 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 884 op ==;
+#X text 96 884  is A equal to B ? 1=true \,  0=false ;
+#X obj 0 916 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 916 op !=;
+#X text 96 916  is A not equal to B ? ;
+#X obj 0 948 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 948 op >;
+#X text 96 948  is A greater than B ? ;
+#X obj 0 980 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 980 op <=;
+#X text 96 980  is A not greater than B ? ;
+#X obj 0 1012 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1012 op <;
+#X text 96 1012  is A less than B ? ;
+#X obj 0 1044 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1044 op >=;
+#X text 96 1044 is A not less than B ? ;
+#X obj 0 1076 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1076 op sin*;
+#X text 96 1076  B * sin(A) in centidegrees ;
+#X text 512 1076 --;
+#X text 768 1076 waves \,  rotations;
+#X obj 0 1108 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1108 op cos*;
+#X text 96 1108  B * cos(A) in centidegrees ;
+#X text 512 1108 --;
+#X text 768 1108 waves \,  rotations;
+#X obj 0 1140 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1140 op atan;
+#X text 96 1140  arctan(A/B) in centidegrees ;
+#X text 512 1140 --;
+#X text 768 1140 find angle to origin (part of polar transform);
+#X obj 0 1172 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1172 op tanh*;
+#X text 96 1172  B * tanh(A) in centidegrees ;
+#X text 512 1172 smooth clipping;
+#X text 768 1172 smooth clipping (of individual points) \,  neural sigmoid \,  fuzzy logic;
+#X obj 0 1204 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1204 op log*;
+#X text 96 1204  B * log(A) (in base e) ;
+#X obj 0 1236 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1236 op gamma;
+#X text 96 1236  floor(pow(a/256.0 \, 256.0/b)*256.0) ;
+#X text 512 1236 gamma correction;
+#X obj 0 1268 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1268 op **;
+#X text 96 1268  A**B \,  that is \,  A raised to power B ;
+#X text 512 1268 gamma correction;
+#X obj 0 1300 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1300 op abs-;
+#X text 96 1300  absolute value of (A-B) ;
+#X obj 0 1332 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1332 op rand;
+#X text 96 1332  randomly produces a non-negative number below A ;
+#X obj 0 1364 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1364 op sqrt;
+#X text 96 1364  square root of A \,  rounded downwards ;
+#X obj 0 1396 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1396 op sq-;
+#X text 96 1396  (A-B) times (A-B) ;
+#X obj 0 1428 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1428 op avg;
+#X text 96 1428  (A+B)/2 ;
+#X obj 0 1460 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1460 op hypot;
+#X text 96 1460  distance function: square root of (A*A+B*B) ;
+#X obj 0 1492 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1492 op clip+;
+#X text 96 1492  like A+B but overflow causes clipping instead of wrapping around (coming soon) ;
+#X obj 0 1524 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1524 op clip-;
+#X text 96 1524  like A-B but overflow causes clipping instead of wrapping around (coming soon) ;
+#X obj 0 1556 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1556 op erf*;
+#X text 96 1556  integral of e^(-x*x) dx ... (coming soon \;  what ought to be the scaling factor?) ;
+#X obj 0 1588 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1588 op weight;
+#X text 96 1588  number of "1" bits in an integer;
+#X obj 0 1620 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1620 op sin;
+#X text 96 1620 sin(A-B) in radians \,  float only;
+#X obj 0 1652 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1652 op cos;
+#X text 96 1652 cos(A-B) in radians \,  float only;
+#X obj 0 1684 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1684 op atan2;
+#X text 96 1684 atan2(A \, B) in radians \,  float only;
+#X obj 0 1716 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1716 op tanh;
+#X text 96 1716 tanh(A-B) in radians \,  float only;
+#X obj 0 1748 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1748 op exp;
+#X text 96 1748 exp(A-B) in radians \,  float only;
+#X obj 0 1780 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1780 op log;
+#X text 96 1780 log(A-B) in radians \,  float only;
+#X obj 0 1832 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1832 op C.*    ;
+#X text 96 1832 A*B;
+#X obj 0 1864 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1864 op C.*conj;
+#X text 96 1864 A*conj(B);
+#X obj 0 1896 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1896 op C./    ;
+#X text 96 1896 A/B;
+#X obj 0 1928 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1928 op C./conj;
+#X text 96 1928 A/conj(B);
+#X obj 0 1960 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 1960 op C.sq-  ;
+#X text 96 1960 (A-B)*(A-B);
+#X obj 0 1992 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 1992 op C.abs- ;
+#X text 96 1992 abs(A-B);
+#X obj 0 2024 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 2024 op C.sin  ;
+#X text 96 2024 sin(A-B);
+#X obj 0 2056 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 2056 op C.cos  ;
+#X text 96 2056 cos(A-B);
+#X obj 0 2088 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 2088 op C.tanh ;
+#X text 96 2088 tanh(A-B);
+#X obj 0 2120 cnv 15 1024 30 empty empty empty 20 12 0 14 -249792 -66577 0;
+#X msg 10 2120 op C.exp  ;
+#X text 96 2120 exp(A-B);
+#X obj 0 2152 cnv 15 1024 30 empty empty empty 20 12 0 14 -233280 -66577 0;
+#X msg 10 2152 op C.log  ;
+#X text 96 2152 log(A-B);
+#X obj 10 2194 outlet;
 #X connect 6 0 245 0;
 #X connect 11 0 245 0;
 #X connect 16 0 245 0;
@@ -311,14 +311,14 @@
 #X connect 237 0 245 0;
 #X connect 240 0 245 0;
 #X connect 243 0 245 0;
-#X obj 95 0 cnv 0 0 2206 empty empty empty -1 12 0 14 0 -66577 0;
-#X obj 511 0 cnv 0 0 2206 empty empty empty -1 12 0 14 0 -66577 0;
-#X obj 767 0 cnv 0 0 2206 empty empty empty -1 12 0 14 0 -66577 0;
-#X obj 0 32 cnv 15 1024 14 empty empty empty 20 12 0 14 -248881 -66577 0;
+#X obj 95 0 cnv 0 0 2214 empty empty empty -1 12 0 14 0 -66577 0;
+#X obj 511 0 cnv 0 0 2214 empty empty empty -1 12 0 14 0 -66577 0;
+#X obj 767 0 cnv 0 0 2214 empty empty empty -1 12 0 14 0 -66577 0;
+#X obj 0 32 cnv 15 1024 18 empty empty empty 20 12 0 14 -248881 -66577 0;
 #X text 10 32 numops;
-#X obj 0 1808 cnv 15 1024 14 empty empty empty 20 12 0 14 -248881 -66577 0;
-#X text 10 1808 vecops for complex numbers;
-#X text 10 2206 
+#X obj 0 1812 cnv 15 1024 18 empty empty empty 20 12 0 14 -248881 -66577 0;
+#X text 10 1812 vecops for complex numbers;
+#X text 10 2214 
 	note: a centidegree is 0.01 degree. There are 36000 centidegrees in a circle.
         Some angle operators use centidegrees \,  while some others use radians. To
         convert degrees into centidegrees \,  multiply by 100.



More information about the Gridflow-cvs mailing list