
Using PureData to control a haptically-enabled virtual
environment.

Stephen Sinclair
IDMIL, McGill University

sinclair@music.mcgill.ca

Marcelo M. Wanderley
IDMIL, McGill University

marcelo.wanderley@mcgill.ca

ABSTRACT
This paper presents a client-server model for using Pure-
Data to create and control a physically dynamic virtual en-
vironment, with which the user can interact using a hand
controller haptic device.

Keywords
Haptics, virtual, multi-modal, audio, force-feedback

1. INTRODUCTION
Today, the commercial market for force-feedback haptic

devices is finally beginning to reach consumer-level prices.
In this context, it is interesting to think about how this
new modality can be integrated into programs like PureData
(Pd), which already supports audio and video processing.

One possible approach is to create a “haptics” external for
Pd, allowing direct access to the haptic device. This would
consist of a set of objects which read the device’s position,
and output forces to the device’s motors. A diagram of how
this might work is given in Figure 1. In fact, this approach
is feasible and we have implemented such objects for Sens-
Able’s OpenHaptics drivers as a proof of concept. However,
the results are of very low haptic fidelity.

Unfortunately, haptics has different computational de-
mands than both audio and control data. While audio data
can afford latency of a few milliseconds, making it possi-
ble to compute it in blocks of samples, haptic data must
be calculated in a single-sample manner with latency of no
more than 1 millisecond [6], (due to 500 Hz being close to
the upper bound of the tactile frequency range.) This is
essentially because a haptic device is both an input and an
output device—the two data directions are inherently cou-
pled in a closed-loop fashion, with the human operator being
part of the loop. In order to provide a realistic “touch”, and
to simulate “stiff” walls, it is required to provide high-speed
throughput, which implies real-time constraints that are not
present in other modalities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PureData Convention ’07 Montreal, Canada
Copyright 2007 Copyright remains with the author(s).

Figure 1: A PureData patch which calculates an
undamped haptic virtual wall on the plane defined
by the Y-Z axes of a 3-dimensional space. This ap-
proach, though working, cannot currently achieve
the real-time throughput and steady timing neces-
sary for good haptic fidelity.

Previously, we presented an approach to integrating hap-
tics with existing software that makes use of a client-server
model for separating haptics computations from the audio
software [10]. The haptics “server” takes commands from a
PureData patch running on the same or another computer
through the OpenSoundControl (OSC) protocol [12]. The
specified OSC messages allow the dynamic creation of 3D
objects which can be touched by a haptic device, while con-
straints on their movement can also be specified, so that
virtual mechanisms may be constructed. Here, we give an
overview of this project, which we hope may be of interest
to the Pd community, and present some more recent Pd-
specific developments.

2. CHALLENGES FOR REAL-TIME 3D
HAPTICS COMPUTING IN PD

The changes required for integrating a direct implemen-
tation of haptic servos in Pd would be non-trivial. It would
require, essentially, building a third system of patch cords
(in addition to the audio and control patch cords). This is
because the “position” object (Fig. 1) would have to send 1
sample of the position vector every millisecond with guar-
anteed regularity and as little jitter as possible. In contrast,
the audio system computes a block of samples at a time, and
puts them on the hardware’s buffer every 5 to 50 millisec-
onds, while the control system runs asynchronously, with no
real-time requirements. A simple patch (Fig. 2) can show
the difficulty in achieving this latency with Pd.



Figure 2: Demonstrating the difficulty of achieving
millisecond timing in PureData: screenshot taken
under Ubuntu Linux 7.04 running the 2.6.20-16-
realtime kernel and the “-rt” Pd option as root with-
out audio processing enabled, on a dual-core AMD
computer.

Another disadvantage to such an approach is that the hap-
tics system would run within the Pd process. While not
inherently a problem, it is often the case that haptic al-
gorithms are computationally expensive, and it is helpful to
dedicate a CPU purely to the servo. Often a haptics servo is
executed on seperate hardware, such as a dedicated DSP, to
guarantee timing. Thus, the haptic process should at least
be separable, and communications should be asynchronous
(between modalities), so as to allow uninterrupted real-time
performance.

Since force-feedback haptics usually implies some sort of
3D rigid or deformable body simulation, a final difficulty in
implementing virtual reality systems purely in Pd is that a
high-level approach would generally be preferred. Pd lends
itself well to description and control of the environment, but
low-level mathematics libraries, such as those discussed in
the next section, are typically implemented as C externals,
providing access to functionality through messages or special
objects and data structures.

3. PHYSICAL MODELLING IN PD
The state of the art for physical modelling in Pd is repre-

sented by a set of objects designed by Henry Cyrille called
“pmpd” [5], which was later optimised into a single object
called “msd” by Nicolas Montgermont. These objects al-
low the patch to specify mass-spring systems representing a
scene, which can then be stepped through time using trig-
gers from a “metro” object or similar.

This mass-spring system is quite similar in concept to
CORDIS-ANIMA [1], which has successfully been used to
model physical systems for simultaneous audio, visual, and
haptic representations. Therefore it is logical to presume
that pmpd may also be used as such. However, there are a
couple of limiting factors in this regard. Firstly that pmpd
depends on the PureData scheduler, which, as described
above, is not adequate for haptics computation. Secondly,

Figure 3: Using the Phantom Omni from SensAble
Technologies to interact with an object. The Pure-
Data patch that manages the scene is visible on the
right-hand side of the screen.

that we are interested in the simulation of rigid bodies,
which are not supported by pmpd. Having said this, how-
ever, if PureData’s scheduler could be made to meet haptics
requirements, it could be very interesting to interface pmpd
or msd with a haptic device. Another possibility could be to
modify them to run their own scheduler at the haptic rate,
but then a threaded system such as may be required begins
to resemble the client-server model discussed here.

4. A VIRTUAL ENVIRONMENT SERVER
The need to separate physics and haptics processing from

the Pd process and scheduler leads to the approach in-
troduced in section 1, which is to create a sort of “hap-
tics server”, written in a natively compiled programming
language, which implements a set of commonly-used algo-
rithms, and allows a client to control and communicate with
the simulation using messaging. Since the target here is
to communicate with PureData or other audio software, a
natural choice is to make use of the increasingly popular
Open Sound Control (OSC) protocol. OSC’s hiearchical ad-
dressing scheme lends itself particularly well to a simulation
scene-graph consisting of objects and attributes.

PureData informs the server about what type of scene to
construct, and the server instantiates objects on demand.
Objects created in this virtual world can be touched and
manipulated by a haptic controller, and can also collide
with each other using a physical dynamics engine. Messages
can be sent back to Pd, so that it can give audio or visual
feedback of events. Thus, virtual objects simulated by this
method are reminiscent of Mulder’s Virtual Musical Instru-
ments (VMI) [7]. Mulder stated that the haptic sense was
missing from his early VMI, but with the system described
here, that modality can be implemented.

The remainder of this paper will describe what kind of
objects can be instantiated, and give some examples of how
a Pd patch can create and receive feedback from the envi-
ronment using OSC messages. Some notes on the imple-
mentation will follow.

A picture of the system in use is shown in Figure 3.



Figure 4: The PebbleBox example, and the Pure-
Data patch that created it. (The audio portion of
the patch is not shown.) The light-coloured sphere
represents the haptic proxy, which can push on the
“marbles”.

5. OBJECTS AND CONSTRAINTS
Currently, only simple primitives are supported; namely,

spheres and prisms. However, more complex shapes can
be created by combining them into compound objects. Fu-
ture work will include arbitrary mesh objects, as well as
deformable surfaces, and haptic texture rendering. In the
meantime, it has been found that plenty of interesting VMI
can be created with these simple shapes.

For example, a model of O’Modhrain’s PebbleBox [8] was
created by constructing a box shape, and filling it with
spheres. When the spheres collide, the collision forces are
used to excite a physical synthesis, just as in the real Pebble-
Box. An image of this system, and the patch, can be seen in
Figure 4. We have used it to excite a simple modal synthesis
algorithm, and have also interfaced it to allow gestural con-
trol of a spatialization patch, with each sphere representing
a sound-file “object”.

In additional to events like collision, continuous properties
of objects can be requested, such as acceleration, velocity,
position and rotation. Any property can be requested either
instantaneously, or to be reported at regular intervals over
time.

To create relationships between objects, messages can be

used to specify constraints. Constraints determine how ob-
jects can move in relation to each other, or in relation
to the global coordinate system. Constraints correspond
with the Open Dynamics Engine’s (ODE) concept of joints
[11]. Some examples of constraints that can be specified are
hinges, ball joints, sliding joints, and universal joints.

Each of these constraints specifies restrictions on how ob-
jects can move—implicitly, each constraint has one or more
free axes (e.g., a hinge can rotate in one direction). Thus,
each constraint can also be given some “response”, which
is a force-profile function to be applied to the constraint’s
free axes. For example, a hinge can have a damped spring
applied to its direction of movement. Constraint responses
can also be textures, to provide a “grainy” feel, or can be
given a virtual wall or breakable membrane (a “pluck”) at
some particular position.

6. NAMESPACE
Objects are created using the appropriate create message,

and are subsequently considered part of the namespace. For
example,

/object/sphere/create s1 0 0 0

/object/s1/force 10 0 0

This would create a sphere named s1 and then apply a
force of 10 N with a direction along the X axis. Haptic and
visual materials for objects can also be specified this way,
such as friction, or colour. To create a constraint, a similar
syntax is used:

/object/prism/create box1 -0.1 0 0

/object/prism/create box2 0.1 0 0

/constraint/hinge/create h1 box1 box2 0 0 0 0 1 0

After creating two boxes at the default size, the third
message creates a hinge between them which rotates around
the origin (0,0,0) on the Y axis (0,1,0). Pushing on either
of these boxes, the user will see them move relative to each
other around this axis, as well as moving away from the
origin with their collective momentum.

To specify a constraint’s response, for example to give
the hinge a spring, it can be attributed with the response
message:

/constraint/h1/response/spring 0.001 0.0001

This specifies a spring with a stiffness of 0.001 N·m/rad
and a damping factor of 0.0001 N·m/rad/s. This very weak
spring will have the effect of making the rotation of one box
pull lightly on the rotation of the other box, so that they
will follow each other around the shared axis.

The final step might be to retrieve the torque on this
spring, so that pushing on it with the haptic controller would
yield some change in sound.

/constraint/h1/torque/magnitude/get 10

The above tells the server to report the constraint torque’s
magnitude every 10 ms. PureData would then receive an
OSC message at regular intervals which it could use to mod-
ulate some timbral parameter.

Further information on the currently supported names-
pace can be found on the project’s website 1, and the pro-
jected specification for future work can be found in [9].
1http://www.music.mcgill.ca/musictech/idmil/projects/
forcefeedback



7. IMPLEMENTATION
The “haptics server”, named DIMPLE (for Dynamic In-

teractive Musically PhysicaL Environment) is implemented
in C++ using a combination of CHAI 3D [2] (for haptics)
and the ODE (for physical dynamics). Since each library
requires its own scene graph, an instance of objects are cre-
ated once in each and corresponding object positions are
re-synchronized periodically. The ODE runs at some slower
speed (usually 100 Hz), while CHAI’s haptic loop runs at 1
KHz. The former calculates collisions between all objects in
the scene and updates their positions according to physical
variables. The latter calculates collision detection and fric-
tion for the haptic proxy—an object representing the haptic
device. Currently the implementation uses shared memory
between pthreads, but a move to separate processes may be
considered in the future for more robust reliability and to al-
low for splitting the two tasks over different computers on a
local network. OSC messaging is accomplished via LibLo [4].
The software is cross-platform, running on Linux, Windows,
or Mac OS X. Unfortunately, not all device manufacturers
provide drivers for all of these operating systems, but CHAI
3D supports at least 3 different devices for Windows, with
Linux support for SensAble’s Phantom devices.

In an attempt to investigate differences in inter-modal
communication latency, DIMPLE has more recently been
compiled as a Pd object. In this form, it no longer runs in
its own process but is available through the usual Pd exter-
nal API, loaded as a shared object. This implies that the
UDP protocol and the loopback network are not needed, as
OSC packets are passed using Pd’s message system. Formal
evaluation of the effect on inter-modal latency needs to be
done. Additionally, it is hoped that this form of DIMPLE
may provide a convenient way to stream information at the
signal rate between the audio and haptic systems, making
it possible to incorporate vibrotactile feedback into a sim-
ulation. We have previously considered using inter-process
streaming solutions such as the JACK Audio Connection
Kit [3] for this purpose, but Pd provides a simpler method
for now. Note however that as a Pd object, DIMPLE cannot
run on a separate machine, though usual techniques could
be used to split audio processing to another Pd instance. It
still makes use of pthreads to execute haptics and physics
asynchronously, however, so multi-core computers may ben-
efit.

8. DISCUSSION
The intent for this project is to provide a way for re-

searchers in music technology to easily create rigid body
virtual environments that interface comfortably with audio
software, without having to go through the hoops of 3D pro-
gramming in C++, and to provide haptics researchers a way
to easily integrate sound into multi-modal demonstrations.

Future work with the environment will include user stud-
ies on the role of the kinesthetic sense in playing and learning
to play virtual musical instruments.

We have also used the software for a few non-haptic tasks,
purely taking advantage of the physics engine. For example,
we have mapped a pressure-sensitive floor to the gravity vec-
tor, so that objects fly in one direction or another according
to how a user moves his weight. We have also used spheres
as “cannon balls” by applying an artificial force according to
how hard a drum pad was hit, and then used the resulting

trajectory to control the spatialization of sound sources as
the spheres bounce around a virtual room.

In the future, more object types will be supported, as well
as other kinds of haptic feedback effects, such as gravity
wells (for easily locating and “picking” objects), and vibra-
tional cues. The latter may be useful for simulating musical
interactions such as bowing.

9. ACKNOWLEDGMENTS
This work was sponsored in part by the Natural Sciences

and Engineering Research Council of Canada (NSERC), the
Canadian Foundation for Innovation (CFI), and the Enac-
tive Network European Project.

10. REFERENCES
[1] C. Cadoz, A. Luciani, and J. L. Florens.

CORDIS-ANIMA: a modeling and simulation system
for sound and image synthesis—the general formalism.
Computer Music Journal, 17(1):19–29, 1993. MIT
Press.

[2] F. Conti, D. Morris, F. Barbagli, and C. Sewell. CHAI
3D. Available: http://www.chai3d.org/, November
2006.

[3] Davis, P. et al. JACK Audio Connection Kit
(software).
Available: http://jackaudio.org.

[4] S. Harris and N. Humfrey. LibLo: Lightweight OSC
implementation. Available:
http://liblo.sourceforge.net/, January 2007.

[5] C. Henry. Physical modeling for pure data and real
time interaction with an audio synthesis. In
Proceedings of the SMC, 2004.

[6] M. Minsky, O.-Y. Ming, O. Steele, F. P. Brooks Jr.,
and M. Behensky. Feeling and seeing: issues in force
display. In SI3D ’90: Proceedings of the Symposium on
Interactive 3D Graphics, pages 235–241, New York,
NY, USA, 1990. ACM Press.

[7] A. Mulder. Virtual musical instruments: Accessing the
sound synthesis universe as a performer. In
Proceedings of the First Brazilian Symposium on
Computer Music, pages 243–250, 1994.

[8] S. M. O’Modhrain and G. Essl. PebbleBox and
CrumbleBag: Tactile interfaces for granular synthesis.
In Proceedings of the Conference on New Interfaces
for Musical Expression, pages 74–79, Hamamatsu,
Japan, August 2004.

[9] S. Sinclair. OSC for haptic virtual environments:
Specification. Technical Report MUMT-IDMIL-07-01,
McGill University, Music Technology Area, Feb 2007.

[10] S. Sinclair and M. M. Wanderley. Defining a control
standard for easily integrating haptic virtual
environments with existing audio/visual systems. In
Proceedings of the Conference on New Interfaces for
Musical Expression, pages 209–212, New York, NY,
June 2007.

[11] R. Smith. Open Dynamics Engine (software).
Available: http://www.ode.org, November 2006.

[12] M. Wright, A. Freed, and A. Momeni. OpenSound
Control: State of the art 2003. In Proceedings of the
Conference on New Interfaces for Musical Expression,
pages 153–159, 2003.


