
Audiopint: A Robust Open-Source Hardware Platform for
Musical Invention

David Merrill
MIT Media Laboratory

20 Ames Street
Cambridge, MA, USA

dmerrill@media.mit.edu

Benjamin Vigoda
MIT Media Laboratory

20 Ames Street
Cambridge, MA, USA

ben@benvigoda.com

David Bouchard
MIT Media Laboratory

20 Ames Street
Cambridge, MA, USA

davidb@media.mit.edu

ABSTRACT
In this paper, we present our work on Audiopint, a portable,
physically-robust platform for expressive musical invention
built around Pure Data for audio processing and inexpen-
sive commercially-available hardware. Audiopint is a small
ruggedized Linux-based computer with a number of physi-
cal and software modi�cations. These modi�cations are in-
tended to make the platform high-performance and reliable
for a live performer, while preserving the �exibility of a pro-
grammable PC-based system. In addition to communicating
our current progress, this paper represents an invitation for
a discussion around the relevant design and technology is-
sues.

Keywords
musical performance, open source software, new instruments
for musical expression, audiopint

1. INTRODUCTION
Electronic sound synthesizers and audio e�ects proces-

sors have become essential tools for amateur and profes-
sional musicians. Guitar stomp-boxes, rack-mount reverb
units, vocal compressors, limiters, loopers, �angers, and de-
lay pedals are used commonly both in the studio and in
live performance. Hardware MIDI synthesizers are similarly
numerous, traditionally built in rack-mount form, and they
require the additional purchase of separate controllers. The
economics of the music products industry has driven the
production of these relatively-expensive, single-purpose au-
dio e�ects, synthesizer modules and controllers, and the re-
sult is that many of today's musicians collect a large amount
of unwieldy �gear� that must all be carried with them from
home to studio to performance venue, and connected to-
gether for use in each location.
Some manufacturers have attempted to reach new cus-

tomers while addressing the problem of gear-proliferation
by building lower-cost �all-in-one� synthesizers [17] or e�ects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Pd Convention 2007. Montréal, Québec, Canada.
Copyright 2007. Copyright remains with the author(s).

Figure 1: A stack of Audiopints, with rugged plastic
Pelican case exteriors.

modules [11]. While succeeding in reducing the number of
devices that a musician must have in order to produce a
wide range of timbres, these products have been perceived
by consumers as lower-quality than their single-purpose fore-
runners. Additionally, these multiple-feature products often
require the purchase of expensive peripheral controllers be-
fore they become fully usable.
One compelling alternative to expensive commercial prod-

ucts is the tradition of homemade designs. The hardware
and signaling requirements of the MIDI speci�cation are
su�ciently easy to implement that many electronic music
researchers and tinkerers have built custom controllers that
are capable of communication with o�-the-shelf or software
synthesizers. Additionally, inexpensive sensor-to-midi hard-
ware platforms [18] [14] have become available, allowing mu-
sicians with minimal electronics and microcontroller skills,
but a do-it-yourself (DIY) attitude to create completely new
musical interfaces with relative ease. The broader resur-
gence of the DIY movement [7] has begun to attract main-
stream press [13], and incorporates philosophical founda-
tions from the free software movement [5].
Software e�ects processors and synthesizers run on lap-

top computers are frequently used in performance. While



these setups are relatively portable and have �exible be-
havior, laptop-based systems tend to be much more frag-
ile than their road-hardened single-purpose counterparts,
have higher audio latency, and many have lower audio qual-
ity. Moreover, high-quality commercial software synthesiz-
ers and e�ects can be just as expensive as their hardware
counterparts.
We believe that the ultimate low-cost, user-de�nable au-

dio control, processing and synthesis platform would com-
bine the �exibility and programmability of a laptop com-
puter with the portability and durability of a guitar pedal
with the high-quality sound of a professional rack-mount au-
dio synthesizer/processor. Furthermore, it would permit the
easy integration of new, user-invented controllers. Enabling
enthusiasts to easily build their own musical interfaces and
instruments has great promise to generate compelling and
long-lasting designs. The increasing numbers of laptop-using
artists illustrates that dedicated DSP-based devices are no
longer necessary for many musical performances. Today's
personal computers have adequate computational capabili-
ties for real-time audio synthesis and e�ects. Furthermore,
the economy of scale that drives PC processor prices continu-
ally downward works in our favor, meaning that the personal
computer is now capable of replacing the dedicated DSP
for real-time audio processing and synthesis. In this paper
we present Audiopint, an inexpensive platform composed of
commodity hardware and open-source software and built for
live audio performance or installation with a wide range of
controllers. Audiopint continues to be re�ned through ongo-
ing development, and the purpose of this paper is to discuss
the design decisions made and the technology options that
have informed our process. We feel that this discussion will
be useful to the growing community of musical performers
working with electronic tools.

2. AUDIOPINT DESIGN GOALS
The Audiopint platform was developed to �ll a need for

a low-cost, ultra-�exible, physically robust digital audio ef-
fects processor and synthesizer. Dissatis�ed with expensive,
non-modi�able commercially available controller/synthesizer
products, the decision was made early on to build Audiopint
with free open-source software and inexpensive hardware.
The vision for Audiopint encompasses the following goals:

• Flexibility: Audiopint should permit total user cus-
tomization of signal-processing behavior, input con-
troller interface, synthesis, and interaction with other
devices.

• Robustness: Audiopint should be �gig-worthy� in the
sense that it can be handled roughly, dropped, kicked
or otherwise mistreated in the manner that dedicated
audio gear can, without fear of easy breakage.

• Open-Source and inexpensive: Audiopint is built
with open-source software and commodity personal-
computer hardware, making it inexpensive to build
and unencumbered by copyright or patents.

• Screen-Free usage model: �Laptop performers� have
received much well-deserved criticism for their lack of
expressive gesture during performance. We hypothe-
size that the presence of the laptop's screen encourages

Figure 2: Anatomy of an Audiopint, and o�-the-
shelf interface devices that have been used in per-
formance with our systems. For details, please see
[3]

a performer to interact with the computer in computer-
like ways, to the detriment of the audience-performer
connection. Audiopint is meant to be used like a �pro-
grammable guitar pedal� that is con�gured beforehand,
allowing the performer to focus entirely on the perfor-
mance itself at show-time.

• Plug, power, and go: Using a con�gured Audiopint
should be as easy as using a standard audio gear, need-
ing only to be powered up and connected to an ampli-
�cation system in order to be ready for use.

The following sections will discuss the hardware and soft-
ware components that make up the Audiopint system.

2.1 Hardware
The core hardware of the Audiopint platform is a small

form-factor PC. Our current version uses a �mini-itx� form-
factor VIA Epia EN 1500 motherboard with 512MB of RAM
[20]. These boards are used widely for in-automobile com-
puter systems, industrial machinery and robotics, digital
signage, walk-up kiosks and other embedded applications,
and they are reasonably-priced due to the economy of scale.
The board is powered by a small fanless power-supply-unit
(PSU).
In order to properly �rugged-ize� the computer, we have

mounted the motherboard inside a durable plastic case, with
power, audio, and interface connections broken out to the
exterior. A single cooling fan pulls air across the mother-
board and out through holes cut into the case. This fan can
be switched o� manually for conditions in which zero system
noise is tolerable, and the case can be left open for natural
ventilation.
For extreme shock-proof durability and noise reduction,

we have replaced the hard disk with a USB �ash memory
drive. This reduces noise and prevents data-loss problems
related to disk drive head crashes.



2.2 Software
The priorities for Audiopint's software have been that

it should be cheap or free, capable of high-quality e�ects,
feature low-latency, and be extremely customizable. The
Audiopint platform is based on the Linux operating sys-
tem, making it free and open source, and audio process-
ing/synthesis is currently done with the Pure Data (PD)
application [16].
Pure Data is an open-source sibling of the Max/MSP au-

dio and video processing software, and it provides a �data�ow�
style program representation that can be patched interac-
tively by placing objects onto the work area, and drawing
connections between them using the mouse. PD has an ac-
tive developer community that constantly improves its per-
formance and adds new features.
Our use of PD also allows for the easy incorporation of

LADSPA audio plugins [12]. LADSPA is a standard API for
writing plugins in Linux, and is supported by many open-
source audio programs, making it an open-source analog of
the popular VST architecture for windows. Projects exist
to load VST plugins in PD or directly with the Jack Audio
Connection Kit (JACK) [9], but we have not investigated
this possibility.

3. SYSTEM DESIGN ISSUES
The following section will discuss a number of system de-

sign issues that were faced during the construction of Au-
diopint.

3.1 Operating System
The ability to customize Audiopint's operating system en-

vironment was of paramount importance, and so Linux is
used. The particular distribution we currently use is a min-
imal version of Ubuntu Linux [19], a popular variant of the
Debian distribution [4]. Ubuntu was chosen because it is
well-documented and packaged for ease of use, and its cur-
rent widespread popularity makes it relatively easy to �nd
answers to common problems. The recent Ubuntu Studio
�avor also provides an optimized kernel and packages several
audio applications. Other candidate distributions we consid-
ered were AGNULA [1] and Planet CCRMA [15], both of
which are targeted at the development of multimedia appli-
cations.
In order to satisfy our �plug, power, and go� requirement,

it was important that the system be able to boot completely,
load any necessary drivers/modules, and start the Pure Data
application without any user input. To accomplish this, the
boot process was modi�ed to login automatically without
requiring user input, and startup scripts were installed to
launch Pure Data with a user-de�nable patch.
In addition to starting Pure Data automatically, Audiopints

have been con�gured to automatically register their DHCP-
assigned IP address on boot, allowing for convenient remote
login for system con�guration. VNC and SSH are both in-
stalled on the default Audiopint operating system image,
making this access possible.

3.2 Audio Latency
Audio latency refers to the time delay between input to

the system (auditory or control) and corresponding audio
output. In order for Audiopint to be usable as an e�ects
processor, it is necessary to minimize this delay as much
as possible, in order to compete with the instantaneous feel

Figure 3: Measuring latency through the Audiopint.
The top waveform on the oscilloscope screen is the
signal directly from the piezo sensor, and the bot-
tom waveform shows the audio emerging from the
Audiopint's audio interface.

of analog or dedicated digital signal processor (DSP) based
systems. Consensus in the electronic music research com-
munity suggests that 10 milliseconds (msec) is an acceptable
upper bound for absolute latency [29] [22]. Minimizing la-
tency requires careful selection and tuning of both hardware
and software. In order to get the lowest latency from our
existing hardware, we found the following steps useful.

3.2.1 Real-time preemptive kernel
The Audiopint kernel provides real-time preemption. In

handling incoming events (audio samples, or control events)
the factors that a�ect the response time of the operating sys-
tem are interrupt latency, interrupt handler duration, sched-
uler latency, and scheduling duration. A full discussion of
these factors is beyond the scope of this paper, but can be
found online [30].

3.2.2 Pure Data
Pure Data is the open-source audio-processing software

we have chosen to use in Audiopint. In order to make Pure
Data run with as little latency as possible, we run it in real-
time mode with a small audio bu�er and processing block
size.
We used an oscilloscope to measure best-case end-to-end

audio latency by directly monitoring a piezoelectric sen-
sor or microphone on one channel, and on another chan-
nel monitoring the output from Audiopint running a Pure
Data �pass-through� patch that simply transmits incoming
audio from a connected microphone to the system's speak-
ers. We physically strike the Audiopint-connected micro-
phone against the sensor/microphone connected directly to



the oscilloscope, and compare the time o�set between the
two peak arrivals. Using this setup we have measured an
end-to-end latency of 6.5 milliseconds.
Since this �gure represents zero-load latency, we expect

latency to increase with Pure Data patch complexity. We
have achieved lower latency using an inexpensive USB iMic
[6] audio interface, better even than the motherboard's built-
in audio.

3.3 Boot time
In addition to minimizing audio latency, it is important for

a �gig-worthy� audio processing system to boot quickly. O�-
the-shelf analog and dedicated-DSP systems usually start
up almost instantaneously, and thus we have tried to mini-
mize boot-time as much as possible. This saves a performer
time when setting up their gear, or if a reboot is required
mid-performance. We have modi�ed the operation system's
startup scripts to load only services that are absolutely nec-
essary. In the motherboard's BIOS we have disabled all boot
devices other than the USB drive. Also in the BIOS, we
have con�gured the system to start up automatically when
power is applied, so a single master power switch can turn
the Audiopint on and o�.

3.4 Plug-ability
The ability to un-plug and re-plug controllers during a

performance can be critical. Accidental un-plugging events
happen, and we wanted the system to handle them grace-
fully, without requiring a system reboot to reconnect the
controller to the running PD application.
An external object [input_noticer] [26] was written in

C for Pure Data that allows for scanning of the system's
hardware. It accepts a human-readable product identi�ca-
tion string as an argument, and outputs a Linux �le de-
scriptor, so that the PD patch can attach to the device.
Using this external, a PD patch can be con�gured to attach
to a controller speci�ed by name like �Microsoft Sidewinder
Dual Strike� when the patch starts, or when a new hard-
ware attach event is detected, allowing for on-the-�y plug
and re-plug-ability.
Other approaches to plug-ability have been implemented

for PD, most notably the find_hid script written by Tim
Blechmann [21]. find_hid can similarly locate the �le de-
scriptor for a particular USB device, but is currently limited
to �nding a single device (returning the �rst instance found),
and cannot register with the system to listen for new hard-
ware plug-in events.

4. CURRENT STATUS
A piece was performed at SIGGRAPH 2006 that featured

six performers all recording and manipulating live sound us-
ing microphones and USB gamepad controllers, powered by
a single Audiopint. The instrument was called PureJoy, and
our custom improvisation conducting software JamiOki was
used [28]. An Audiopint-based system was demonstrated
continuously for two days at the Consumer Electronics Show
in Las Vegas, Nevada in January 2007. The same system
was installed in the MIT Music Library for a week later in
January, and in the MIT Stata Center for three months of
interactive use in the Spring of 2007. Audiopint-based in-
struments have also been demonstrated at the 2007 Maker
Faire in San Mateo, CA and the 2007 New Interfaces for
Musical Expression conference in New York, NY.

Figure 4: Performance at SIGGRAPH 2006, utiliz-
ing a single Audiopint to power live audio sampling,
layering and e�ects manipulation for six performers
simultaneously.

The hardware is being built and tested iteratively, in the
context of the Inventmusic working group at the MIT Media
Laboratory [8]. For the PureJoy application we currently
use a Microsoft Sidewinder Dual Strike joystick featuring
9 buttons, 2 continuous degrees-of-freedom and a point-of-
view hat for control. Other o�-the-shelf USB input devices
like mice, cameras, tablets or other game controllers can eas-
ily be integrated as-is, or taken apart and their components
repurposed for use with Audiopint. For instance, the sensing
mechanism from a wireless USB optical mouse can be used
in performance as a general purpose 2-D motion sensor. Ad-
ditionally, custom-made human-interface devices using HID
or serial port communication such as the Create User Inter-
face [25] or Arduino [2] can easily be used with Audiopint,
with software modules for Pure Data such as [hidio] [26].

5. RELATED WORK
Personal computers have only recently become powerful

enough to be used as a �exible platform for audio processing
and synthesis. The Jesusonic project [10] embeds a complete
computer (including screen and keyboard) into a wooden
�oor pedal, and o�ers a text-based interface on-screen for
modifying and saving e�ect con�gurations on-the-�y. The
most important di�erence between the Jesusonic and Au-
diopint is that while the former is built expressly to be
a guitar e�ects processor, Audiopint is built to enable a
wide range of interactive, sound-based performance, includ-
ing performance with custom-made controllers. Addition-
ally, our work�ow is intended to support editing patches on
a separate computer with the comfort and e�ciency of a full
graphical user interface, then loading these patches into Au-
diopint for performance. The limitations of our work�ow are
intentional, such that when the performer is on stage they
can interact with Audiopint as a simple pedal/synthesizer,
rather than as a personal computer that requires a high de-
gree of their focused attention.
Another research area that shares some underlying moti-

vations with Audiopint is the existing work on self-contained



Figure 5: An Audiopint with the top open at the
2007 Maker Faire, showing its interior and sur-
rounded by USB gamepads.

sensor/speaker systems and co-design of synthesis algorithms
and controllers [23] [27], both of which attempt to create a
natural connection and co-location between controller, syn-
thesizer/processor, and sound transducer. The Audiopint
project similarly reduces on-stage clutter and permits an
audience to focus on the performer and instrument (rather
than the computer). However, since Audiopint is a plat-
form rather than an instrument, it permits a wider range of
control and performance possibilities.
Finally, the Gluiph project [24] features a version of the

Pure Data program compiled to run on a Complex Pro-
grammable Logic Device (CPLD). This audio processing and
control platform can read sensor data directly, and has been
built into several augmented musical instruments. While
Gluiph is physically smaller than Audiopint, we have cho-
sen to use a full PC in order to allow easy integration of a
wide array of controllers, and a more full set of software and
operating system possibilities.

6. CONCLUSIONS AND FUTURE WORK
Audiopint is a new portable hardware platform for ex-

pressive control and synthesis of digital sound. We have
outlined the current state of the project, both hardware and
software, and will now identify a few new features that we
are investigating.
Being based around a Linux computer, Audiopint can ac-

cept input from any device that is recognized by the oper-
ating system. In addition to repurposing existing USB in-
put devices as mentioned above, we will be using Audiopint
as a performance platform for other completely custom, in-
vented instruments. Inexpensive UART-to-serial chips, as
well as microcontrollers with built-in USB functionality, al-
low custom interactive sensing systems to be recognized by
the Audiopint and attached to Pure Data patch parameters
easily. We are members of a growing community of cus-
tom instrument-builders using tools like these, and we will
endeavor to make Audiopint useful to this community.
Other future additions involve the conceptualization of

the Audiopint itself as having an audio-speci�c �nervous

system�. Imagined in this way, audio-speci�c functionality
could be built as Pure Data libraries that would provide mu-
sic or audio speci�c functionality. This functionality could
be utilized when creating interactive patches, allowing in-
struments running on the Audiopint to be more musically
collaborative, or jam-session-friendly. Example functions
include beat tracking, pitch/key detection or network con-
nectivity. Considered in this manner, the audio-optimized
Linux we use could be loosely thought of as the device's cir-
culatory system, the ruggedized box an exoskeleton, and
built-in microphones or wireless network connectivity its
specialized sensory hardware. This conceptualization has
been useful to our design process, as we consider how the
Audiopint may become a more re�ned synthetic organism
for music-and-audio-creation.
Looking further ahead, a growing community of Audiopint

users will bene�t from a standardized platform and well-
documented instructions. Sharing �nervous systems� ele-
ments and other Pure Data patches with each other on-
line, we predict that this do-it-yourself-DSP community of
artists and enthusiasts will dramatically accelerate the �eld
of electronic music performance. We have begun to fos-
ter this online community at the Audiopint website, at:
http://audiopint.org/.

7. ACKNOWLEDGMENTS
We would like to thank the Things That Think and Digital

Life consortia of the MIT Media Lab for supporting this
work. We would also like to thank VIA for their donation
of hardware, and Seth Nickell and Dan Williams for their
invaluable Linux help.

8. REFERENCES
[1] Agnula gnu/linux audio distribution.

http://www.agnula.org/.

[2] Arduino. http://www.arduino.cc/.

[3] Audiopint.org. http://audiopint.org/.

[4] Debian linux. http://www.debian.org/.

[5] Free software foundation. http://www.fsf.org/.

[6] Gri�n technology imic: Usb audio interface. http:
//www.griffintechnology.com/products/imic/.

[7] Instructables. http://www.instructables.com/.

[8] Inventmusic. http://inventmusic.org.

[9] The jack audio connection kit.
http://jackaudio.org/.

[10] Jesusonic. http://www.jesusonic.com/.

[11] Line6. http://www.line6.com/.

[12] Linux audio developer's simple plugin api.
http://www.ladspa.org/.

[13] Make magazine. http://www.makezine.com/.

[14] Midisense.
http://www.ladyada.net/make/midisense/.

[15] Planet ccrma at home. http:
//ccrma.stanford.edu/planetccrma/software/.

[16] Pure data. http://puredata.info/.

[17] Roland usa. http://www.rolandus.com/.

[18] Sensorlab.
http://www.steim.org/steim/sensor.html.

[19] Ubuntu linux. http://www.ubuntu.com/.

[20] Via.
http://www.via.com.tw/en/products/mainboards/.



[21] T. Blechmann. �nd_hid. http:
//cvs.sourceforge.net/viewcvs.py/pure-data/
abstractions/tb/find_hid.py?view=markup.

[22] E. Brandt and R. Dannenberg. Low-latency music
software using o�-the-shelf operating systems. Proc.
1998 Intl. Computer Music Conf.(ICMC-98), pages
137�141, 1998.

[23] P. Cook. Remutualizing the musical instrument:
Co-design of synthesis algorithms and controllers.
Journal of New Music Research, 33(3):315�320, 2004.

[24] S. Kartadinata. The gluiph: a nucleus for integrated
instruments. Proceedings of the 2003 conference on
New Interfaces for Musical Expression, pages 180�183,
2003.

[25] D. Overholt. Musical interaction design with the
create usb interface: Teaching hci with cuis instead of
guis. In the proceedings of the International Computer
Music Conference, 2006.

[26] H.-C. Steiner, D. Merrill, and O. Matthes. A uni�ed
toolkit for accessing human interface devices in pure
data and max/msp. Proceedings of the 2007 conference
on New interfaces for Musical Expression, 2007.

[27] B. C. Trueman, D. and P. Cook. Alternative voices for
electronic sound: Spherical speakers and
sensor-speaker arrays (sensas). Proceedings of the
International Computer Music Conference, 2000.

[28] B. Vigoda and D. Merrill. Jamioki-purejoy: A game
engine and instrument for electronically-mediated
musical improvisation. Proceedings of the 2007
conference on New Interfaces for Musical Expression
(NIME'07), 2007.

[29] D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Proceedings of
the 2001 conference on New interfaces for musical
expression, pages 1�4, 2001.

[30] C. Williams. Linux scheduler latency. http://www.
linuxdevices.com/articles/AT8906594941.html.


