patching music together:
collaborative live coding in pure data

IOhannes m zmolnig
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts
Graz, Austria
zmoelnig@iem.at

ABSTRACT

Live Coding has established itself as a performance practice
within the field of computer music in the last few years. One
of the main motivations for this technique has been to pro-
vide a level of corporality of the performance and interaction
between performers and auditory, which are often lacking in
traditional computer music as opposed to other music per-
formance techniques. In this paper we present a Pd-based
environment suitable for Live Coding and discuss its fitness
for interactive performance.

Special focus is given to the direct interaction between
multiple performers on- and off-site that exceeds the tradi-
tional playing-hearing-reacting cycle.

Keywords

Live-Coding, Collaborative Development, Pure data

1. INTRODUCTION

“Live Coding” is a relatively young performance practice
that has established itself in the field of inter-media art
within the last few years. By the term “Live Coding” we un-
derstand a media performance, where performers create and
modify their software-based instruments in real time during
the performance, as opposed to traditional computer music
performances, where pre-produced content is played back
(“tape music”) or the musicians are performing with ready
made software-instruments by starting (or scheduling) and
parameterising unit-generators, effects or algorithms.

In Live Coding performances, the algorithms used to gen-
erate media content are thought of and written in real-time
before the audience, possibly leading to unknown and some-
times unexpected (even to the performers themselves) re-
sults.

Like in other live musical performances, it is most fun to
perform not as an individual but as a group.

2. QUESTSIN LIVE-CODING

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Pd Convention 2007. Montréal, Québec, Canada.

Copyright 2007. Copyright remains with the author(s).

2.1 TheQuest for Code-Literacy

In order to allow the audience to follow the on-the-fly evo-
lution of algorithms, a common practice among Live Coders
is the projection of code. While this exposes the code (and
thus the algorithms implemented by this code), the audience
is confronted with another intellectually challenging layer:
reading and understanding written (and executed) software.
While this is probably not a problem for code-literate people
(e.g. software developers), it is usually less satisfactory for
people who are not used to a certain language (or who are
not programmers at all).

This is usually amplified by the use of text-based lan-
guages that offer “elegant” but condensed solutions that are
hard to grasp if one is not familiar with a certain idiom.

We believe, that using graphical programming environ-
ments like Pd[10], this challenge can be somewhat facili-
tated. While one can argue that graphical languages tend
to express control structures in a rather cumbersome way
(as compared to textual languages)[9], the simple metaphor
of data-flow allows people who are not familiar with the
language to at least get an overall idea what might be go-
ing on. After all, programming in data-flow languages like
Pd has been directly derived from real patching (wiring) of
electronic modular instruments.

For those who do not want to read the patch as algorithms
at all, graphical languages can at least offer eye-pleasing, less
technoid visuals.

2.2 The Quest for Collaboration

Like other collaborative improvisations, Live Coders can
implement a 3-phase way of playing together: After a phase
of playing (aka: coding), one enters a phase of listening to
the combined result which leads to reflection on the outcome
and provokes further steps.

A more elaborate way of playing together can be achieved
by sharing data, e.g. by directly using the signal output of
a co-player, or by sharing control data via a network.

Nevertheless all these techniques are superficial, as they
only allow the players to interact on the level of symptoms
of the used algorithms, rather than on the algorithmic level.

In order to overcome this limitation, one has to share the
algorithms between multiple players: in the case of Live
Coding this is equivalent to sharing the code in real time.

One solution for this task has been implemented in the
Just-In-Time Library (JITlib)[11] for SuperCollider[5], where
one player writes a snippet of code, which is then trans-
mitted to the co-players, who can then modify the snippet
and re-commit it[3]. While this allows for interaction on



the algorithmic level, the evolution is again restricted to a
code-commit-recode cycle, since only valid (this is: syntac-
tically correct) snippets can be committed and the changes
to the code stay invisible to the rest of the ensemble until
one chooses to publish them.

In order to address this, we propose a way of interacting
on an even lower level: people should be able to write code
together in parallel instead of only reshaping code sequen-
tially.

A distributed collaborative editor allows patching both
independently and in close collaboration, where every par-
ticipant has full control over the entire patch.

In text-based environments this problem has been tack-
led in the last years[2], resulting in both commercial (like
SubEthaEdit[6]) for the Mac OS-X platform) and FLOSS
solutions (e.g. the cross-platform editor Gobby([1]).

However, all of these require dedicated server and client
software, the latter usually being text editors (only), which
makes it necessary to heavily tweak them, before being able
to use them for collaborative patching with Pd.

The rest of the paper will discuss possible ways to allow
multiple users edit a Pd patch collaboratively.

3. FIRST STEPS

In the performance series Blind Date|7], several people
are creating a patch producing an audio-visual concert from
scratch: A small group of performers (at least two, but
usually no more than that) is working simultaneously on
one patch, sharing their ideas but also interfering with each
other, e.g. by hindering their partners to create a certain
object.

The first attempt to fulfill this requirement was rather
simple: several mice and keyboards were attached to the
computer that runs the patch (figure 1).

Figure 1: A simplistic collaborative patching en-
vironment, using USB-keyboards, USB-mice and a
VGA-splitter

While this is solution is very simple to achieve, it has some
obvious drawbacks:

e scalability: while connecting a number of input devices
via USB is simple, distributing the video-output to
several monitors quickly becomes cumbersome, as few
machines have more than 2 VGA-outputs and VGA-
splitters are expensive.

e locality: using USB- and VGA-connections the partic-
ipants can only be so far from the host computer.

e focus: sharing keyboard and mouse has the strong dis-
advantage of having a shared focus. Therefore if one

person is working on one part of the patch, all other
people are forced to work on the very same part too.

4. ARCHITECTURE

Pd has a networked architecture, that separates the
DSP-engine (the pd process) from the user-interface
(the pd-gui process). These two components commu-
nicate via a TCP /IP-connection.

When Pd is normally started, the DSP-engines starts
up, opens a port (per default: 5600), and then starts
a second process, the pd-gui which connects back to
the engine (see figure 2).

pd gqui

port:5600

pd dsp

Figure 2: Pd as it usually operates: the pd-gui pro-
cess connects to the engine (pd dsp) on (e.g.) port
5600.

A naive approach to fix some of the above mentioned
problems, is by introducing a proxy-server that sits
in-between these two components. The only thing this
proxy has to do, is to pass on all information it receives
from the pd-gui to the engine and vice versa.

pd gui pd gui

port:5600 ort:5600
pd proxy

port:

pd dsp

Figure 3: Several pd-guis connecting to a proxy
which forwards the data to the engine. Data com-
ing from the engine, is broadcast to all connected
pd-guis

This can be extended to use several clients, e.g. pd-guis:
all data from the pd-guis is sent “anonymously” to
the engine (which does not know nor care which GUI
it is receiving from). The engine does the interpre-
tation of the data (e.g. create an object [foo] from
the text “f00”) and sends the display instructions (in
theory “display an object called 'foo’ with 1 inlet”, but
in reality rather “display the name ’'foo’ and draw 4
lines around itand then make a black area at position
x/y”) back to the proxy, which then distributes it to
the pd-guis, updating all of them synchronously (see
figure 3).

4.1 A simpleproxy writtenin Pd

The good news about this approach is, that it does not
need any special modifications to the Pd executables.



Both the Pd engine and the pd-gui can act as a server
(opening a port on which they listen for incoming con-
nections) and as a client (connecting to a port on a
server), depending on their startup arguments.
Making the proxy a server for both engine- and GUI-
clients allows (in theory) to connect multiple GUIs and
engines together.

In a first proof of concept we just concentrate on con-
necting multiple GUIs to a single engine.

While the implementation of the proxy could be done
in any environment, we chose to do a first realisation
within Pd itself (see figure 4).

For the simplest case of a proxy that only relays the
data between the engine and one or several GUI’s, it
is sufficient to use two servers (e.g. Martin Peach’s
[tcpserver] object[8]) and connect them to each other,
sending all data that are received by one server to all
clients connected to the other server and vice versa.
In order to allow GUIs to connect at a later time and
still become synched with the rest of the patch, we use
a buffer that stores all messages sent from the engine
to the GUIs. Whenever a new GUI connects to the
proxy, it is first updated with the entire history. Then
it is synchronised with the rest and can start to act as
a new replicated interface.

4.2 A more sophisticated proxy

A merely replicating proxy has several caveats. For
instance, every user can modify the global state of
the server, which can be problematic, when one of
the users incidentally Quits “their” instance, which in
fact quits the engine and furthermore all GUIs from
the other users. This can be helped by adding filter-
ing rules, that might modify or suppress certain mes-
sages (e.g. by not allowing the GUIs to send the ;pd
quit message to the engine, one can protect the engine
against being shut down by one of the users).

It would also be possible to colourise parts of the patch
based on the users who contributed to that part.

A proxy could also generate instructions on its own.
For instance, it has proven problematic, that the par-
ticipants are not able to see the mouse pointers of their
partners.! A solution to this can be a proxy, that while
passing on the mouse-movement to the engine also tells
the connected GUIs to draw a mouse representation
on their window(s), thus giving all participants visual
feedback about all mouse pointers.

5. EXPERIENCE

Honestly, we haven’t yet used the proposed solution
in a “real world” environment. The Blind Date in-
stance at the pd-convention07 will hopefully be our
first public performance with this networked collabo-
rative patching environment.

!The pd-gui gets the mouse position and forwards it to the
engine, but it does not draw the mouse pointer. Instead, the
mouse pointer is displayed by the X-server (or a correspond-
ing service, depending on your platform). Since the X-server
is local to the machine running the pd-gui, the performers
have no visual feedback on what the other participants are
currently doing with their mouse. This problem does not
occur with keyboard interaction, since the characters are
directly drawn by the pd-gui.

6. DISCUSSION
6.1 Similar environments for Pd
6.1.1 serendiPd

The proposed way of collaborative patching is very
similar to that of Hans-Christoph Steiner’s serendiPd|[12]
The main difference is, that serendiPd requires the
clients to run a special patch for connectivity to the
server, whereas here the clients do not even run a
full-fledged Pd but only the GUI process. However,
this also means, that the client does not produce any
audio- or video- output on its own, which might be
non-satisfactory in dislocated performances. In fu-
ture versions the proxy might also support connecting
multiple DSP-engines which might solve this, as each
“node” would then run a synched version of both the
engine and the GUI.

6.1.2 netpd

While Roman Hifeli’s netpd[4] offers high level inter-
action, the here proposed solution is on a very low
level. netpd concentrates on creating music with shared
programs (by uploading pre-made abstractions and al-
low all users to control these abstractions in a col-
laborative manner), whereas we rather concentrate on
creating programs/patches together. The ease and
smoothness of netpd comes at the cost of obeying a
strict set of rules, in order to make patches “netpd-
aware”. On the other hand, the proxy solution offers
nothing but connecting.

6.2 Longing for abetter separation

While Pd’s separation between its engine and the user
interface makes the proxy approach possible, one has
to admit that things are not totally optimal. In the
current implementation the GUI does hardly more than
tell the engine what is happening at the input devices
(keyboard, mouse) and in turn draws rectangles and
characters as told by the engine. This leads to concur-
rency problems when several GUIs are communicating
with one engine at the same time. For instance, if two
users want to modify two sliders with their mice at the
same time, the engine gets confused as it seems like one
mouse pointer is jumping fast between the two sliders.
If the GUI was able to evaluate the mouse movement
by itself, it would be sufficient to tell the engine that
the value of slider z has changed to y. This would
eliminate the ambiguity of the two mouse movements,
while at the same time reducing the total network traf-
fic (and therefore the workload of the proxy).

7. CONCLUSIONS

In this paper we introduced a Pd-based environment
for collaborative Live Coding, that allows interaction
of several networked performers on a low level. Be-
cause no changes to neither Pd-engine nor pd-gui are
required, the proposed proxy approach does not rely
on any specific version of Pd or externals for both user
interface and DSP. An implementation of this proxy
done within Pd has been presented.?

2Note that unlike the engine and the GUI, the proxy imple-



8. ACKNOWLEDGEMENTS

Big hugs to the pd-graz collective for their general sup-
port and their Blind Date performance, that inspired
this paper.

9. REFERENCES

[1] A. Burgmeier and P. Kern. Gobby - a
collaborative text editor, 2005-. Available from
World Wide Web: http://gobby.0x539.de/
[cited 2007/07/18].

[2] C. Cook. Towards Computer-Supported
Collaborative Software Engineering. PhD thesis,
University of Canterbury, Canterbury, New
Zealand, 2006.

[3] A. de Campo, A. Vacca, H. Holzl, E. Ho,

J. Rohrhuber, and R. Wieser. Code as
performance interface - a case study. In Proc. of
NIME, New York, to be published.

[4] R. Héfeli. netpd, 2007. Available from World
Wide Web: http://wuw.netpd.org/ [cited
2007,/07/20].

[5] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music
Journal, 26(4):61-68, 2002.

[6] M. Ott, M. Pittenauer, and D. Wagner.
Subethaedit, 2005-. Available from World Wide
Web: http://www.codingmonkeys.de/
subethaedit/collaborate.html [cited
2007/07/18].

[7] pd graz. blind date. performance series, 2005.

[8] M. Peach. net library for pd, 2006. Available
from World Wide Web:
http://pure-data.cvs.sourceforge.net/
pure-data/externals/mrpeach/net/ [cited
2007/07/20].

[9] M. Petre. Why looking isn’t always seeing:
Readership skills and graphical programming.
Communications of the ACM, 38(6):33—44, 1995.

[10] M. S. Puckette. Pure data. In Proceedings of the
International Computer Music Conference, pages
224-227. International Computer Music
Association, 1997.

[11] J. Rohrhuber and A. de Campo. Uncertainty
and waiting in computer music networks. In
Proceedings of the International Computer Music
Conference, 2004.

[12] H.-C. Steiner. serendipd - impromptu networked
collaboration, 2004. Available from World Wide
Web: http://at.or.at/serendipd/ [cited
2007,/07/20].

mentation relies on a proper Pd version and certain externals
installed.



DSP GUI
<data to all QU clients>
cdata to all DSP clients <data to single GU client>

[[T'st prepend broadcas Tst prepend broy«ﬁ:as‘q[l st prepend senq
TSt tri

sew_connection

stores &l | nessages from
efigi ne: whenever a
connects, it
be updat ed
current status.

W'_; prepend (

<socket of newly connected GU >

Figure 4: A very simple replicating proxy



