
patching music together:
collaborative live coding in pure data

IOhannes m zmölnig
Institute of Electronic Music and Acoustics

University of Music and Dramatic Arts
Graz, Austria

zmoelnig@iem.at

ABSTRACT
Live Coding has established itself as a performan
e pra
ti
e
within the �eld of
omputer musi
 in the last few years. One
of the main motivations for this te
hnique has been to pro-
vide a level of
orporality of the performan
e and intera
tion
between performers and auditory, whi
h are often la
king in
traditional
omputer musi
 as opposed to other musi
 per-
forman
e te
hniques. In this paper we present a Pd-based
environment suitable for Live Coding and dis
uss its �tness
for intera
tive performan
e.
Spe
ial fo
us is given to the dire
t intera
tion between

multiple performers on- and o�-site that ex
eeds the tradi-
tional playing-hearing-rea
ting
y
le.

Keywords
Live-Coding, Collaborative Development, Pure data

1. INTRODUCTION
�Live Coding� is a relatively young performan
e pra
ti
e

that has established itself in the �eld of inter-media art
within the last few years. By the term �Live Coding� we un-
derstand a media performan
e, where performers
reate and
modify their software-based instruments in real time during
the performan
e, as opposed to traditional
omputer musi

performan
es, where pre-produ
ed
ontent is played ba
k
(�tape musi
�) or the musi
ians are performing with ready
made software-instruments by starting (or s
heduling) and
parameterising unit-generators, e�e
ts or algorithms.
In Live Coding performan
es, the algorithms used to gen-

erate media
ontent are thought of and written in real-time
before the audien
e, possibly leading to unknown and some-
times unexpe
ted (even to the performers themselves) re-
sults.
Like in other live musi
al performan
es, it is most fun to

perform not as an individual but as a group.

2. QUESTS IN LIVE-CODING

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Pd Convention 2007. Montréal, Québec, Canada.
Copyright 2007. Copyright remains with the author(s).

2.1 The Quest for Code-Literacy
In order to allow the audien
e to follow the on-the-�y evo-

lution of algorithms, a
ommon pra
ti
e among Live Coders
is the proje
tion of
ode. While this exposes the
ode (and
thus the algorithms implemented by this
ode), the audien
e
is
onfronted with another intelle
tually
hallenging layer:
reading and understanding written (and exe
uted) software.
While this is probably not a problem for
ode-literate people
(e.g. software developers), it is usually less satisfa
tory for
people who are not used to a
ertain language (or who are
not programmers at all).
This is usually ampli�ed by the use of text-based lan-

guages that o�er �elegant� but
ondensed solutions that are
hard to grasp if one is not familiar with a
ertain idiom.
We believe, that using graphi
al programming environ-

ments like Pd[10℄, this
hallenge
an be somewhat fa
ili-
tated. While one
an argue that graphi
al languages tend
to express
ontrol stru
tures in a rather
umbersome way
(as
ompared to textual languages)[9℄, the simple metaphor
of data-�ow allows people who are not familiar with the
language to at least get an overall idea what might be go-
ing on. After all, programming in data-�ow languages like
Pd has been dire
tly derived from real pat
hing (wiring) of
ele
troni
 modular instruments.
For those who do not want to read the pat
h as algorithms

at all, graphi
al languages
an at least o�er eye-pleasing, less
te
hnoid visuals.

2.2 The Quest for Collaboration
Like other
ollaborative improvisations, Live Coders
an

implement a 3-phase way of playing together: After a phase
of playing (aka:
oding), one enters a phase of listening to
the
ombined result whi
h leads to re�e
tion on the out
ome
and provokes further steps.
A more elaborate way of playing together
an be a
hieved

by sharing data, e.g. by dire
tly using the signal output of
a
o-player, or by sharing
ontrol data via a network.
Nevertheless all these te
hniques are super�
ial, as they

only allow the players to intera
t on the level of symptoms
of the used algorithms, rather than on the algorithmi
 level.
In order to over
ome this limitation, one has to share the

algorithms between multiple players: in the
ase of Live
Coding this is equivalent to sharing the
ode in real time.
One solution for this task has been implemented in the

Just-In-Time Library (JITlib)[11℄ for SuperCollider[5℄, where
one player writes a snippet of
ode, whi
h is then trans-
mitted to the
o-players, who
an then modify the snippet
and re-
ommit it[3℄. While this allows for intera
tion on

the algorithmi
 level, the evolution is again restri
ted to a

ode-
ommit-re
ode
y
le, sin
e only valid (this is: synta
-
ti
ally
orre
t) snippets
an be
ommitted and the
hanges
to the
ode stay invisible to the rest of the ensemble until
one
hooses to publish them.
In order to address this, we propose a way of intera
ting

on an even lower level: people should be able to write
ode
together in parallel instead of only reshaping
ode sequen-
tially.
A distributed
ollaborative editor allows pat
hing both

independently and in
lose
ollaboration, where every par-
ti
ipant has full
ontrol over the entire pat
h.
In text-based environments this problem has been ta
k-

led in the last years[2℄, resulting in both
ommer
ial (like
SubEthaEdit[6℄) for the Ma
 OS-X platform) and FLOSS
solutions (e.g. the
ross-platform editor Gobby[1℄).
However, all of these require dedi
ated server and
lient

software, the latter usually being text editors (only), whi
h
makes it ne
essary to heavily tweak them, before being able
to use them for
ollaborative pat
hing with Pd.
The rest of the paper will dis
uss possible ways to allow

multiple users edit a Pd pat
h
ollaboratively.

3. FIRST STEPS
In the performan
e series Blind Date[7℄, several people

are
reating a pat
h produ
ing an audio-visual
on
ert from
s
rat
h: A small group of performers (at least two, but
usually no more than that) is working simultaneously on
one pat
h, sharing their ideas but also interfering with ea
h
other, e.g. by hindering their partners to
reate a
ertain
obje
t.
The �rst attempt to ful�ll this requirement was rather

simple: several mi
e and keyboards were atta
hed to the

omputer that runs the pat
h (�gure 1).

hello world

print

0

message atom

object

���
���
���
���

��
��
��
��

hello world

print

0

message atom

object

Figure 1: A simplisti

ollaborative pat
hing en-
vironment, using USB-keyboards, USB-mi
e and a
VGA-splitter

While this is solution is very simple to a
hieve, it has some
obvious drawba
ks:

• s
alability: while
onne
ting a number of input devi
es
via USB is simple, distributing the video-output to
several monitors qui
kly be
omes
umbersome, as few
ma
hines have more than 2 VGA-outputs and VGA-
splitters are expensive.

• lo
ality: using USB- and VGA-
onne
tions the parti
-
ipants
an only be so far from the host
omputer.

• fo
us: sharing keyboard and mouse has the strong dis-
advantage of having a shared fo
us. Therefore if one

person is working on one part of the pat
h, all other
people are for
ed to work on the very same part too.

4. ARCHITECTURE
Pd has a networked ar
hite
ture, that separates the
DSP-engine (the pd pro
ess) from the user-interfa
e
(the pd-gui pro
ess). These two
omponents
ommu-
ni
ate via a TCP/IP-
onne
tion.
When Pd is normally started, the DSP-engines starts
up, opens a port (per default: 5600), and then starts
a se
ond pro
ess, the pd-gui whi
h
onne
ts ba
k to
the engine (see �gure 2).

pd gui

pd dsp
port:5600

Figure 2: Pd as it usually operates: the pd-gui pro-

ess
onne
ts to the engine (pd dsp) on (e.g.) port
5600.

A naive approa
h to �x some of the above mentioned
problems, is by introdu
ing a proxy-server that sits
in-between these two
omponents. The only thing this
proxy has to do, is to pass on all information it re
eives
from the pd-gui to the engine and vi
e versa.

pd gui

pd proxy

pd gui

pd dsp

port:5500

port:5600 port:5600

Figure 3: Several pd-guis
onne
ting to a proxy
whi
h forwards the data to the engine. Data
om-
ing from the engine, is broad
ast to all
onne
ted
pd-guis

This
an be extended to use several
lients, e.g. pd-guis:
all data from the pd-guis is sent �anonymously� to
the engine (whi
h does not know nor
are whi
h GUI
it is re
eiving from). The engine does the interpre-
tation of the data (e.g.
reate an obje
t [foo℄ from
the text �foo�) and sends the display instru
tions (in
theory �display an obje
t
alled 'foo' with 1 inlet�, but
in reality rather �display the name 'foo' and draw 4
lines around itand then make a bla
k area at position
x/y�) ba
k to the proxy, whi
h then distributes it to
the pd-guis, updating all of them syn
hronously (see
�gure 3).

4.1 A simple proxy written in Pd
The good news about this approa
h is, that it does not
need any spe
ial modi�
ations to the Pd exe
utables.

Both the Pd engine and the pd-gui
an a
t as a server
(opening a port on whi
h they listen for in
oming
on-
ne
tions) and as a
lient (
onne
ting to a port on a
server), depending on their startup arguments.
Making the proxy a server for both engine- and GUI-

lients allows (in theory) to
onne
t multiple GUIs and
engines together.
In a �rst proof of
on
ept we just
on
entrate on
on-
ne
ting multiple GUIs to a single engine.
While the implementation of the proxy
ould be done
in any environment, we
hose to do a �rst realisation
within Pd itself (see �gure 4).
For the simplest
ase of a proxy that only relays the
data between the engine and one or several GUI's, it
is su�
ient to use two servers (e.g. Martin Pea
h's
[t
pserver℄ obje
t[8℄) and
onne
t them to ea
h other,
sending all data that are re
eived by one server to all

lients
onne
ted to the other server and vi
e versa.
In order to allow GUIs to
onne
t at a later time and
still be
ome syn
hed with the rest of the pat
h, we use
a bu�er that stores all messages sent from the engine
to the GUIs. Whenever a new GUI
onne
ts to the
proxy, it is �rst updated with the entire history. Then
it is syn
hronised with the rest and
an start to a
t as
a new repli
ated interfa
e.

4.2 A more sophisticated proxy
A merely repli
ating proxy has several
aveats. For
instan
e, every user
an modify the global state of
the server, whi
h
an be problemati
, when one of
the users in
identally Quits �their� instan
e, whi
h in
fa
t quits the engine and furthermore all GUIs from
the other users. This
an be helped by adding �lter-
ing rules, that might modify or suppress
ertain mes-
sages (e.g. by not allowing the GUIs to send the ;pd
quit message to the engine, one
an prote
t the engine
against being shut down by one of the users).
It would also be possible to
olourise parts of the pat
h
based on the users who
ontributed to that part.
A proxy
ould also generate instru
tions on its own.
For instan
e, it has proven problemati
, that the par-
ti
ipants are not able to see the mouse pointers of their
partners.1 A solution to this
an be a proxy, that while
passing on the mouse-movement to the engine also tells
the
onne
ted GUIs to draw a mouse representation
on their window(s), thus giving all parti
ipants visual
feedba
k about all mouse pointers.

5. EXPERIENCE
Honestly, we haven't yet used the proposed solution
in a �real world� environment. The Blind Date in-
stan
e at the pd-
onvention07 will hopefully be our
�rst publi
 performan
e with this networked
ollabo-
rative pat
hing environment.

1The pd-gui gets the mouse position and forwards it to the
engine, but it does not draw the mouse pointer. Instead, the
mouse pointer is displayed by the X-server (or a
orrespond-
ing servi
e, depending on your platform). Sin
e the X-server
is lo
al to the ma
hine running the pd-gui, the performers
have no visual feedba
k on what the other parti
ipants are

urrently doing with their mouse. This problem does not
o

ur with keyboard intera
tion, sin
e the
hara
ters are
dire
tly drawn by the pd-gui.

6. DISCUSSION

6.1 Similar environments for Pd

6.1.1 serendiPd
The proposed way of
ollaborative pat
hing is very
similar to that of Hans-Christoph Steiner's serendiPd[12℄
The main di�eren
e is, that serendiPd requires the

lients to run a spe
ial pat
h for
onne
tivity to the
server, whereas here the
lients do not even run a
full-�edged Pd but only the GUI pro
ess. However,
this also means, that the
lient does not produ
e any
audio- or video- output on its own, whi
h might be
non-satisfa
tory in dislo
ated performan
es. In fu-
ture versions the proxy might also support
onne
ting
multiple DSP-engines whi
h might solve this, as ea
h
�node� would then run a syn
hed version of both the
engine and the GUI.

6.1.2 netpd
While Roman Häfeli's netpd[4℄ o�ers high level inter-
a
tion, the here proposed solution is on a very low
level. netpd
on
entrates on
reating musi
 with shared
programs (by uploading pre-made abstra
tions and al-
low all users to
ontrol these abstra
tions in a
ol-
laborative manner), whereas we rather
on
entrate on

reating programs/pat
hes together. The ease and
smoothness of netpd
omes at the
ost of obeying a
stri
t set of rules, in order to make pat
hes �netpd-
aware�. On the other hand, the proxy solution o�ers
nothing but
onne
ting.

6.2 Longing for a better separation
While Pd's separation between its engine and the user
interfa
e makes the proxy approa
h possible, one has
to admit that things are not totally optimal. In the

urrent implementation the GUI does hardly more than
tell the engine what is happening at the input devi
es
(keyboard, mouse) and in turn draws re
tangles and

hara
ters as told by the engine. This leads to
on
ur-
ren
y problems when several GUIs are
ommuni
ating
with one engine at the same time. For instan
e, if two
users want to modify two sliders with their mi
e at the
same time, the engine gets
onfused as it seems like one
mouse pointer is jumping fast between the two sliders.
If the GUI was able to evaluate the mouse movement
by itself, it would be su�
ient to tell the engine that
the value of slider x has
hanged to y. This would
eliminate the ambiguity of the two mouse movements,
while at the same time redu
ing the total network traf-
�
 (and therefore the workload of the proxy).

7. CONCLUSIONS
In this paper we introdu
ed a Pd-based environment
for
ollaborative Live Coding, that allows intera
tion
of several networked performers on a low level. Be-

ause no
hanges to neither Pd-engine nor pd-gui are
required, the proposed proxy approa
h does not rely
on any spe
i�
 version of Pd or externals for both user
interfa
e and DSP. An implementation of this proxy
done within Pd has been presented.2

2Note that unlike the engine and the GUI, the proxy imple-

8. ACKNOWLEDGEMENTS
Big hugs to the pd-graz
olle
tive for their general sup-
port and their Blind Date performan
e, that inspired
this paper.

9. REFERENCES
[1℄ A. Burgmeier and P. Kern. Gobby - a

ollaborative text editor, 2005-. Available from
World Wide Web: http://gobby.0x539.de/
[
ited 2007/07/18℄.

[2℄ C. Cook. Towards Computer-Supported
Collaborative Software Engineering. PhD thesis,
University of Canterbury, Canterbury, New
Zealand, 2006.

[3℄ A. de Campo, A. Va

a, H. Hölzl, E. Ho,
J. Rohrhuber, and R. Wieser. Code as
performan
e interfa
e - a
ase study. In Pro
. of
NIME, New York, to be published.

[4℄ R. Häfeli. netpd, 2007. Available from World
Wide Web: http://www.netpd.org/ [
ited
2007/07/20℄.

[5℄ J. M
Cartney. Rethinking the
omputer musi

language: Super
ollider. Computer Musi

Journal, 26(4):61�68, 2002.

[6℄ M. Ott, M. Pittenauer, and D. Wagner.
Subethaedit, 2005-. Available from World Wide
Web: http://www.
odingmonkeys.de/
subethaedit/
ollaborate.html [
ited
2007/07/18℄.

[7℄ pd graz. blind date. performan
e series, 2005.

[8℄ M. Pea
h. net library for pd, 2006. Available
from World Wide Web:
http://pure-data.
vs.sour
eforge.net/
pure-data/externals/mrpea
h/net/ [
ited
2007/07/20℄.

[9℄ M. Petre. Why looking isn't always seeing:
Readership skills and graphi
al programming.
Communi
ations of the ACM, 38(6):33�44, 1995.

[10℄ M. S. Pu
kette. Pure data. In Pro
eedings of the
International Computer Musi
 Conferen
e, pages
224�227. International Computer Musi

Asso
iation, 1997.

[11℄ J. Rohrhuber and A. de Campo. Un
ertainty
and waiting in
omputer musi
 networks. In
Pro
eedings of the International Computer Musi

Conferen
e, 2004.

[12℄ H.-C. Steiner. serendipd - impromptu networked

ollaboration, 2004. Available from World Wide
Web: http://at.or.at/serendipd/ [
ited
2007/07/20℄.

mentation relies on a proper Pd version and
ertain externals
installed.

DSP GUI

buffer

new_connection

list trim

list prepend broadcast

list trim

list prepend broadcast

list trim

list prepend send

1

spigot

0

t f b

f

t b b

del 0

t a <data to all DSP clients>

<data from DSP clients>

t a <data to all GUI clients>

t a <data to single GUI client>

<data from GUI>

t a

<socket of newly connected GUI>
list prepend 0

t f f

t a a
t a

> 0

select 1

fifop

dump

stores all messages from
the engine: whenever a

a new GUI connects, it

will be updated to the

current status.

tcpserver 5500 tcpserver 5600

Figure 4: A very simple repli
ating proxy

