Pure riddle

Krzysztof Czaja
Chopin Academy of Music
Warsaw, Poland
czaja@chopin.edu.pl

ABSTRACT

A small set of extensions to the PureData architecture and
to its external API is proposed, which will facilitate the cre-
ation of audio feature detectors (pitch followers, beat track-
ers, onset detectors, etc.) as Pd patches. An experimental
implementation is discussed, and two application examples
are demonstrated.

1. INTRODUCTION

Most audio feature detectors used in modular environ-
ments are defined as black boxes. Various implementations
of pitch followers, beat trackers, onset detectors, etc. are
available in Pd, however none has been coded in Pd.

The advantage of black-box implementations is that they
are usually better optimized and easier to port between dif-
ferent modular environments. The advantage of white-box
implementations, apart from their accessibility for study to
a wider public, is that they can be made more flexible, easier
to adjust to changing needs, and their parts may be reused in
different contexts. Although white-box implementations are
typically less optimized, the overall performance of an appli-
cation patch may in some cases be better tuned by reusing
common parts of white-box detectors, than by putting sev-
eral black-box detectors to work on the same signal, since
computation effort is quite likely to be wasted in the latter
case.

Unfortunately, defining feature detectors in terms of sim-
ple, generic building blocks is hard. Doing so usually re-
quires different computation block sizes to coexist in a sin-
gle patching window or even in signal I/O of a single object.
Typical vector sizes are other than power-of-two.

One solution to this problem is moving all the nonstan-
dard signal communication between objects to asynchronous
domain. This is further discussed in section 6. A syn-
chronous solution is the main topic of this paper.

2. APPROACH

At the core of such approach is purely synchronous flow
of data of arbitrary size. In order to achieve this, Pd has
to be extended one way or another. Such an extension, the
riddle extension, is presented below primarily as a proposal
to slightly modify the internal implementation of Pd and to
add a small number of calls to its external API. On the other
hand, this extension has already been implemented in the
form of a fully usable external library — riddle library. The
implementation of riddle library is likely to be much different
from any internal version that would ever be developed, but

there are very few differences between the API provided by
riddle library and the API proposed for riddle extension.
Therefore, in this paper both versions of the API are referred
to by the same term, riddle API. Finally, a riddle object is
any object that depends on riddle API.

All riddle objects in a window maintain a constant rate
of calculations. This is the nominal rate for that window,
i.e. derived from a parent window or set by a block™ or a
switch™ object. However, the connections between riddle
objects may carry variable amount of data. The proposal
distinguishes two cases

e a single vector of constant size;
e a collection of dynamically-sized vectors.

Both cases are supported by the library version, provided
data size never exceeds the nominal block size of the window.
The vector size, in the first case, is determined during
the creation of the dsp chain, and does not change until
the next time dsp chain is recalculated. The second case
requires that the actual data is being passed accompanied
with extra elements determining vector sizes, while the data
layout may only be defined during dsp chain creation.

In this scenario, destination objects have to be informed
about the kind of data they are receiving. Riddle library
provides a way for source objects to announce what they
are going to transmit, and a way for destination objects to
obtain that information. It also provides a way to assert that
destination objects receive what they want, and to disable
them in case of failure.

All announcements, queries and assertions are performed
during dsp chain recalculation phase.

3. API

The proposed extension allows riddle objects to selectively
redeclare some or all of their signal outputs. In order to do
so, a class should define a special method, dspblock, which
is to be called by the dsp graph sorting procedure!, prior to
the regular call of the object’s dsp method.

The task of the dspblock routine is to process the signal
resolution slots which contain riddle declarations, i.e. vec-
tor sizes or data layout of the object’s signal ports: inlets,
outlets, and remote connections, where the latter may be
direct or buffered through arrays, delay lines, etc. Specif-
ically, the dspblock method is only invoked when there is
any change of vector size or data layout in input slots, or
of the block size or sampling rate of the containing patch

!The name of this procedure in the current Pd sources is
ugen_done_graph.

(at least, that is the case in the current version of riddle
library). The routine should read the input slots, and fill in
the output slots. When it is done, the graph sorting pro-
cedure validates and transfers vector sizes and data layout
from current object’s output slots to the input slots of all
locally and remotely connected objects. If there is any seri-
ous failure during this process, the object is disabled and its
signal outlets are muted. Otherwise, the usual dsp method
is invoked.

The main source of failures are incompatible connections
between objects. Any possible incompatibility should be
checked for explicitly in dspblock method of a destination
object — provided the destination is actually a riddle ob-
ject. If a connection is from a redeclared outlet to a signal
inlet of a regular Pd object, i.e. an object for which the
dspblock method has not been defined, the possible failure
is determined implicitly by the dsp chain sorting procedure
depending on

e the “strictness flag” which the source object may set
for any of its outlets: a strict connection to a non-
riddle object disables the source;

e the class of destination object: for example, a connec-
tion to print~ is always accepted, and a connection to
send” or throw~ is always rejected?.

Generally, connections from riddle objects to non-riddle
objects are safe, because all blocks of signal data that are
used in the same patch window are allocated the same
amount of memory space, regardless of their interpretation
as regular vectors or according to a riddle declaration®.

Riddle library accepts connections to subpatch inlets and
to outlet™ objects, and recursively traverses such connec-
tions through to the final destinations. The internal imple-
mentation, however, should accept only those connections
that do not involve reblocking. Doing so in riddle library
would probably be the most tricky part of the implementa-
tion, and it was not attempted.

Pd symbols are used to specify data layout in riddle dec-
larations. They are called patterns and have to be in the
following normal form: each element of a pattern is either,
the next lower-case letter not used so far in the pattern,
or an upper-case letter, such that the corresponding lower-
case letter is included in the preceding part of the pattern.
The starting letter *a’ may be omitted. Any pattern that
does not conform to these rules is rejected. In a pattern,
upper-case letters represent vectors, and lower-case letters
represent vector sizes.

The proposed extension to the Pd API consists of ten
calls, which are designed to be used in the dspblock routine:
int riddle_getsourceblock(t_object *, int siginno)
t_symbol *riddle_getsourcelayout(t_object *, int siginno,

int *maxblkp)
int riddle_getsourceflags(t_object *, int siginno)
void riddle_setoutblock(t_object *, int sigoutno, int newblk)
void riddle_setoutlayout(t_object *, int sigoutno,
t_symbol *pattern, int maxblk)

void riddle_setoutflags(t_object *, int sigoutno, int flags)
int riddle_checksourceblock(t_object *, int siginno, int reqblk)
int riddle_checksourcelayout(t_object *, int siginno,

t_symbol *reqgpattern, int *maxblkp)

int riddle_isdisabled(t_object *)
void riddle_disable(t_object *)

2This restriction may be lifted in future library versions.
30r, in case of the internal implementation, at least the
amount required by the nominal block size of the window.

The calls: riddle_disable, riddle_getsourceblock,
riddle_getsourcelayout, and riddle_getsourceflags
may be used in the object’s dsp routine as well as in the
dspblock routine.

A riddle object may declare that the total data size never
exceeds a certain value, by passing a positive maxblk argu-
ment to the riddle_setoutlayout call. The value of that
argument is truncated to the nominal block size of a window,
which is also the default value used when the argument’s
value is zero. The riddle_setoutblock call performs the
same truncation. This is a serious limitation of the library
version of riddle extension, which should not by imposed by
the internal version.

A support for remote connections should be an intrinsic
part of riddle extension. The corresponding API calls are
not listed in this paper. Some further details are discussed
in section 4.

4. IMPLEMENTATION

The experimental implementation takes form of an exter-
nal library®. The library consists of two parts. The riddle
core is a set of routines emulating the proposed extensions
to the object class definition and dsp graph sorting mech-
anism. A collection of externals, each linked to the riddle
core, contains various reusable building blocks aimed at fea-
ture detection applications. In an attempt to minimize con-
fusion, the names of all riddle externals start with the prefix
rd., as in rd.erb~. The best way to use the library is to
load a “hook external”, rd, during the Pd startup phase,
e.g. by using the option -1ib rd. Loading specific riddle
externals on demand is also possible.

Neither the dsp graph sorting procedure, nor the Pd ob-
ject definition cannot be modified by the external library.
Therefore, riddle library provides three wrapping routines
that replace the usual object constructor, destructor, and
dsp methods. A wrapping routine does the extra work com-
mon to all riddle objects, and calls the class-specific routine
(the dsp method actually calls two routines: dspblock and
dsp). The class-specific routines are to be implemented in
the usual way. They have to be registered in the class setup
routine, and the special call riddle_setup should be used
instead of the usual class_new for that purpose. This call
should be removed from the internal implementation.

An important peculiarity of riddle library, which is likely
to disappear in the internal implementation, is the way in
which riddle declarations are propagated to input slots of
destination objects. For reasons that are beyond the scope of
this paper it may be safely achieved only by sending special
"_reblock" messages to destination objects. The _reblock
method is implicitly declared for all riddle classes by the
riddle_setup routine.

Riddle library introduces a common infrastructure for re-
mote communication between riddle objects®. It may be
used to build both, unbuffered connections similar to stan-
dard send~/receive” networks, and buffered connections in
the form of arrays, delay lines, etc. The main entity used in
both cases is riddle buffer, which may be owned by a single
riddle object. A riddle buffer is indirectly accessible to other

4Tt may be downloaded from the miXed/riddle directory of
the SourceForge repository for Pd externals.

5This part of the library is still very experimental.

riddle objects through separate, albeit identically labelled
riddle buffers. For each label, there is at most one riddle
buffer with writing permissions to buffered data, and sev-
eral readers (riddle library does not support accumulating
buffers yet). Current implementation maintains compatibil-
ity between interconnected riddle buffers, and keeps track of
their lifetime.

For each riddle buffer there is a separate remote slot as-
signed to an owning riddle object. Remote slots are pro-
cessed similarly to the local input and output slots of riddle
objects.

All remote connections potentially introduce the writ-
ing/reading order ambiguity. This is particularly unfortu-
nate when a connection is redeclared, since a remote slot has
to be filled by the source before it may be queried by the
destination. If any destination riddle object precedes its re-
mote source in the dsp chain, the current solution schedules
a second pass of the dsp chain creation.

5. EXAMPLES

Two simple application examples show how a white-box
feature detector may be built as a synchronous network.
They might also help to gather some insight into perfor-
mance differences between white-box and black-box imple-
mentations. The first example is Miller Puckette’s fiddle~
pitch tracker [4] dissected into small pieces:

The up subpatch is a network of riddle objects:
|i_n| et |

Eoute anp-range reattack vibrat DJ

' ‘:.

out | et

inlet~ hold inlet~ hold

bl ock~ 1024 1 2

and so is the fu subpatch:

inlet~
inlet~
inlet~

inlet~

rd. peakl i syf $2 i nl et

rd. al/fu~
d. maxfu~ &1
rd. bestfu~
rd. f ack~
rd. fupitch~ $1
out | et

The second example is based on the Klapuri-Collins onset
detector [1]. The main window is quite similar to the one
from the previous example:

bl ock~ 512

bl ock~ 1024 1 2

It is obvious, that these two detectors may easily be com-
bined into a couple, so that when they are set to work on a
common input signal, most of the calculation effort will be
shared.

6. OTHER APPROACHES

A different approach to white-box implementation of fea-
ture detectors is based on performing a signal-to-message
conversion at an early stage, and keeping the main body
of calculations in the asynchronous domain. Many such
“event-driven” solutions are possible. The simplest one is
to directly pack signal vectors into messages, similarly to
the way the iemmatrix library does it with matrices. This
solution suffers from the obvious performance penalty.

There are also many reference-based ways of passing data
around in patching environments, including the Pd native
data structures [2]. Unfortunately, Pd data facility is not
yet ready for the task (some of the reasons are presented
in [3]).

FTM [5] is particularly interesting as a basis for devel-
opment of white-box feature detectors, especially, if ex-
tended with the Gabor library [6]. The main focus of Ga-
bor library is granular synthesis and transformation, where
the natural computation rates are variable: random, pitch-
synchronous, etc. Nonetheless, effectively synchronous im-
plementations of analysis algorithms may be driven by Ga-
bor’s constant-rate signal-to-event transformers, like the
gbr.slice™ module.

No Pd version of FTM exists yet. Porting has been ini-
tiated, but it is still not clear how smoothly would FTM
eventually fit into the Pd message system and its atom typ-
ing rules.

7. CONCLUSIONS

Riddle extension has a clearly defined goal of supporting
the implementation of white-box, purely synchronous signal
feature detectors. The price of achieving this goal is perfor-
mance downgrading in relation to corresponding black-box
implementations, when compared one-to-one in simple test
patches. From a set of very informal performance measure-
ments that were carried out so far it follows, that the black-
box fiddle~ requires approximately 75% of calculation time
spent in running its white-box version.

Event-driven solutions are certainly more general and flex-
ible than any purely synchronous solution can be. They tend
to be much more complex as well. Nonetheless, it is a bad
idea to argue about coding style without taking into account
the requirements of a particular application. It is impossible
to discuss personal habits and taste. The best way, instead,
is to provide several options, and a purely synchronous one
should be among them.

8. REFERENCES

[1] N. Collins. A comparison of sound onset detection
algorithms with emphasis on psychoacoustically
motivated detection functions. In 118th Convention of
Audio Engineering Society, Barcelona, Spain, May
2005.

[2] M. S. Puckette. Using pd as a score language. In
International Computer Music Conference (ICMC),
pages 184—187, Goteborg, Sweden, 2002.

[3] M. S. Puckette. A divide between ‘compositional’ and
‘performative’ aspects of pd. In First Internation Pd
Convention, Graz, Austria, 2004.

[4] M. S. Puckette and T. Apel. Real-time audio analysis
tools for pd and msp. In International Computer Music
Conference (ICMC), pages 109-112, 1998.

[5] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Miiller. Ftm — complex data structures for
max. In International Computer Music Conference
(ICMC), Barcelona, Spain, September 2005.

[6] N. Schnell and D. Schwarz. Gabor, multi-representation
real-time analysis/synthesis. In COST-G6 Conference
on Digital Audio Effects (DAFx), pages 122-126,
Madrid, Spain, September 2005.

