
Patch for guitar

Miller Puckette
Center for Research in Computing and the Arts

University of California, San Diego

msp@ucsd.edu

ABSTRACT
Now that it’s easy to get multiple channels of sound into
and out of a computer with pretty low throughput latency
(thanks partly to the well-designed linux operating system),
an obvious and attractive application is signal-processing
an electric guitar separately string by string. This permits
a wide variety of non-linear processes which, if properly
designed, preserve the periodicity of the individual string
while making possible a wide variety of new sounds. Pitch-
synchronous algorithms also become available. It is also pos-
sible to separate the effect of amplitude change from that of
changing harmonics, thus preserving the playability of the
instrument.

1. INTRODUCTORY POLEMIC
Although computer music overall has seen great advances

in the past fifty years, in one area, using computers in live
instrumental music performance, our understanding is still
crude. The main advances in live computer music perfor-
mance have largely consisted of building an infrastructure,
so that now a musician can combine a computer, audio and
control hardware, and software (Pd being one possibility)
to make a live interactive computer music application. But
visits to a club or concert hall reveal that the computer is
mostly used as a recording and/or sequencing device, rather
than as a musical instrument. The main payoff of comput-
ing in music performance has been to reduce and replace the
role of musicianship.

If playing a musical instrument and/or singing were pure
drudgery this would be all to the good, but it seems likely
that much of musical knowledge is built up through the
physical act of making music in time. Musical cultures, at
least up to now, have been at least partly maintained in a
performance tradition, and even composers (all but the most
theoretically inclined) rely on the sort of musicianship that
is learned and transmitted through music making. And even
though there is clearly much music to be made using studio
techniques and/or sequencers, there is also much to be made

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Pd07, Montreal, Quebec, Canada
Copyright 2007 Copyright remains with the author(s).

instrumentally. The computer is very handy for the former,
but is still only with difficulty applied to the latter.

2. GUITAR PROJECT
With these thoughts in mind, I’ve been at work on a

long-term project to design a rather personalized computer
music instrument to try to bring out and confront some of
the difficulties encountered by musicians trying to use com-
puters in live performance. The instrument is based on a
compact electric guitar (Steinberger/Gibson) with an added
six-string separated pickup (Roland). Not finding an inex-
pensive and compact 6-channel preamp on the market, I
designed and built a very crude one. This is interfaced to a
computer using a multichannel PCI interface (Midiman). A
Pd patch, running in linux, then performs a variety of inter-
esting transformations on the six audio signals, and mixes
them to stereo for output.

This is entirely different from standard “guitar synthe-
sizers” which pitch track the strings to drive synthesizers.
Such instruments make lots of audible mistakes, and they
also suffer from the added latency the comes from the pitch
tracker. In the instrument described here, the latency of the
whole affair is only that of Pd itself, about 10 milliseconds
(it’s probably not hard to reduce it to 5 or 6 using real-time
kernel patches but I preferred to use off-the-shelf linux).

The rest of this paper describes the design of the patch as
it now stands, starting with the overall block diagram and
control strategies, then describing some novel waveshaping
tactics used.

3. ORGANIZATION AND CONTROL STRAT-
EGY

Figure 1 shows a block diagram of the audio chain (with
each individual string going through a separate copy of it).
Individual strings are analyzed both to estimate their indi-
vidual fundamental frequencies (using the sigmund~ object)
and to detect attacks (using bonk~). The current version
of bonk~ uses a 256-sample window; to improve robustness
this is run at half sample rate—22050Hz if the patch runs
at 44100—giving an analysis window of about 11.6 msec
instead of the usual 5.8, at the expense of slightly more de-
lay. The analysis delay only affects the updating of control
parameters; the signal path itself is not delayed by the anal-
yses.

The signal processing chain has one novelty, a waveshap-
ing algorithm designed to allow: (1) decoupling of amplitude
effects from the amplitude of the original signal; (2) replac-

IN

fiddle
bonk &

lopass

bypass

wave-
shaper

octave
up/down

filters

delays

declick

OUT

Figure 1: Block diagram.

ing a sinusoid with a stored wavetable; and (3) specification
of formants in the same way as in the PAF synthesis tech-
nique.

The signal processing chain has about fifty parameters
per string, 9 of which are controlled by ADSR envelopes
triggered by the string via the bonk~ object. The ADSR
parameters, as well as the remaining processing parameters,
are organized into presets. Each string may have a different
preset. The presets may be chosen statically or may change
during play as a function of the timing and order of detected
attacks on the various strings. If attacks are used to trigger
the recall of presets, the presets are changed as early as
possible during the attack, making it necessary for presets
to be recalled very quickly.

To manage this, and to deal with the fact that certain pa-
rameter changes (such as delay times) cause discontinuities
in the signal anyway, a switch-and-ramp unit [2, Section
4.3.2] is placed at the end of the signal processing chain,
activated whenever a “clicking” parameter is changed, and
thus a fortiori when a preset is recalled.

4. WAVESHAPING ALGORITHM
Waveshaping has been around for many years [1], but it

proves difficult to use on real signals for two reasons: first,
the timbre of the output depends on the amplitude of the
input. (Although such a dependency is sometimes desirable,
it should be a matter of choice, not a given). Second, the
amplitude of the output can vary capriciously with the in-
put amplitude. These problems can both be partly circum-
vented by treating signals in the complex plane [3], replacing
the incoming signal by a pair of signals in 90-degree phase
quadrature. In this paper we take this idea one step further
by treating the amplitude and phase of the complex-valued
signal separately.

Suppose we’re given a signal,

x[n] = a · cos(ωn)

and we wish to process it to result in the third harmonic,
cos(3ωn). If we happen to know the amplitude a (suppose
it’s a = 1) we can use waveshaping (nonlinear distortion):

z[n] = f(x[n])

with the waveshaping function f equal to:

f(r) = 4r3
− 3r

and using elementary trigonometry we end up with:

f(1 · cos(ωn)) = cos(3ωn)

So we get the third harmonic as desired. Furthermore, f is
essentially the only function that will do the job. But now
consider the effect if a is different from 1. For higher values
the leading r3 term dominates, so that if a = 10 the output
has peak amplitude 1000. And for lower ones the leading
term quickly disappears, so that when a = 0.1 we end up
with f(r) ≈ −3r so we mostly hear the fundamental instead
of the desired third harmonic.

The fix is to start by replacing the incoming signal by
a pair of signals in 90-degree phase quadrature (using the
hilbert~ abstraction):

x[n] = a · cos(ωn)

y[n] = a · sin(ωn)

from which we can extract time-varying estimates for the
amplitude and phase:

a[n] =
p

x2[n] + y2[n]

φ[n] = Arctan(y[n]/x[n])

To generate an output with the “correct” amplitude but any
desired waveform t(φ/(2π)) for 0 ≤ φ/(2π) ≤ 1, we can just
output computed values of the expression:

z[n] = a[n]t(φ[n]/(2π))

as shown in block diagram in Figure 2.
Figure 3 shows one example of a suitable waveform family

to use with this technique. The parameters s, t are the
slopes of the rising and falling segments and the parameter
d controls the duty cycle of the waveform. With suitable
values of the parameters this can give triangle, sawtooth, or
rectangle waves.

Another possibility is to build formants using the PAF
generator [2, Section 6.4], for which the function t(φ) is given
by:

t(φ) = c(φ)m(φ)

where the carrier function c(φ), given by

c(φ) = (1 − q) cos(kφ) + q cos((k + 1)φ)

sets a center frequency equal to the fundamental times k+q,
with k an integer and q a fraction between 0 and 1. The
modulator function is set to

m(φ) = e−(g sin(φ/2)2

sets a bandwidth approximately g times the fundamental. In
both the PAF and the line-segment waveforms, the parame-
ters may be attached either to envelope generators triggered

IN

Hilbert

cos sin

Arctan Mag-
nitude

OUT

Figure 2: The waveshaping technique in its simplest

form.

s t

0 1 d

Figure 3: Waveform for use as output of waveshap-

ing technique.

by note onsets, or they may be functions of the measured
amplitude a.

Alternatively, one can simply make a series of separate
wavetables for the first several harmonics and control their
amplitudes explicitly as in additive synthesis.

4.1 Harmonics in the input signal
The input signal in reality is not a sinusoid, so it is worth

considering what happens when the waveshaping techniques
above are used on other signals. If the signal is periodic
(roughly true here since the strings are picked up sepa-
rately), we can assume its output is a sum of sinusoids of
frequency ω and its harmonics. Since the “Hilbert” filter
pair is linear, its output is a sum of sinusoids, in phase
quadrature, with the same amplitudes and frequencies as
the input.

If for any reason one of the sinusoids has much greater
amplitude than the others (for example, more than twice
the sum of the others), then we can approximate the extra
signal as a perturbation. For example, suppose the input
signal, after the Hilbert filter, is:

x[n] = cos(ωn) + a cos(ξn)

y[n] = sin(ωn) + a sin(ξn)

with a << 1. Then we get,

a[n] ≈ 1 + a · cos((ξ − φ)n)

φ[n] ≈ 2πk + ωn + a · sin((ξ − φ)n)

(The integer k is an arbitrary phase wrap number that drops
out on applying the wavetable.) Inspecting the result we
conclude that summed-in, low-amplitude sinusoids simulta-
neously modulate the amplitude and phase of the process.

Highly motivated readers might want to check that, if we
use the lookup table

t(φ/(2π)) = cos(φ)

so that in theory we reconstruct the signal x[n] perfectly,
then to order a there are two sidebands, one at which the
phase modulation and amplitude modulation effects cancel
each other, and the other of which reconstructs the perturb-
ing sinusoid.

As a rough estimate, if the summed amplitudes of all the
overtones is less than half the strength of the fundamen-
tal, the above approximation will hold reasonably well. At
the other extreme, if the overtones actually exceed the fun-
damental, one sometimes sees the phase slip forward one
or more extra cycles for a single cycle of the fundamen-
tal, with quite unpredictable results. Geometrically, this
happens when the complex samples wind more than once
around the origin of the complex plane.

In practice, it turns out to be most effective to filter the
guitar strings individually, using a low-pass Butterworth fil-
ter, whose cutoff frequency for each string is chosen some-
where between the seventh and the fifteenth fret. For exam-
ple, a fifth-order filter set to the seventh fret should atten-
uate the octave of the open string by about 15 dB, so that
notes played anywhere up to the twelfth fret remain audible
but the first harmonic should usually predominate. Bleed-
through from the other harmonics then sounds as coherent
modulation, so that timbral variation in the guitar playing
comes through clearly in the final result. Of course, the filter

PHASE IN

-1
1-Z

k

wrap

PHASE OUT

Figure 4: A phase manipulation requiring stored

state: frequency multiplication by nonintegral k.

cutoffs may be set higher instead; in this case many inter-
esting sounds come out but they are not so easily controlled
or analyzed.

4.2 More waveshaping ideas
Two interesting details about the waveshaping algorithm.

First, although most of the time in practice it is more in-
teresting to process the strings separately, it is sometimes
desirable to combine the signals of more than one string
to produce intermodulation effects. A control in the patch
allows to “bleed” the sounds of adjacent strings into each
other. Nonadjacent strings are not allowed to intermodu-
late, in the spirit of keeping the result as predictable and as
controllable as possible.

Second, the stage where the signal is in phase quadrature
is a good occasion to apply any desired frequency shifting.
Because the strings are pitch tracked, the frequency shift
may be chosen as a multiple of the fundamental, in addition
to a constant frequency offset in Hertz.

Except for frequency shifting, the waveshaping algorithms
shown here have mostly been stateless, in the sense that each
phase leads functionally to a (phase, amplitude) pair. A
much larger class of potentially interesting algorithms opens
up when we allow state (memory) to be part of the transfor-
mation. For example, although multiplying the frequency by
an integer (doubling it, for example) is done by multiplying
the phase by an integer, making fractional phase multiplica-
tion requires unwrapping, for instance as shown in Figure 4.
Here we must take the first difference of the phase, “wrap”
the resulting phase increment to lie between -1/2 and 1/2,
multiply by the desired factor k, and then sum to recreate
the new phase.

Another possible extension, not yet explored, is to allow
the instantaneous amplitude to parametrize the waveshap-
ing function. Doing this would not re-introduce the problem
of unpredictable amplitudes cited earlier since we would still
only be operating on the phase of the resulting signal, not
its amplitude which would still be that of the input. As a
simple example, one could have progressively higher ampli-
tudes tune in higher partials using an amplitude-controlled

formant generator.

5. AUDIO POST-PROCESSING
Next, the waveshaped sound is raised or lowered from -2

to +1 octaves, using the techniques of [2, Sections 5.2 and
7.10]. A continuous control effectively cross-fades between
the four octaves available. Next, two “peaking” and one
band-pass filter are applied in series; the three center fre-
quencies and the two attenuation factors are controlled by
envelope generators. Finally, a delay network is provided for
pitch shifting, chorusing, or flanging.

6. CONCLUSION AND FURTHER WORK
This instrument has only been used once in public, with

the Convolution Brothers at Metronom in Barcelona, for
off-ICMC 2005. Since then, several enhancements have been
made and the new system is overdue for another public trial.

Much more work needs to be done in finding intelligent
ways to vary the processing parameters as a function of in-
strumental phrasing. For example, one could imitate wind-
instrument tongueing patterns as a function of the timing
of repeated attacks; or one could loop through a small se-
quence of presets to allow phasing between note and timbre
cycles; or one could enhance or suppress individual harmon-
ics to enhance consonances or dissonances within chords, to
name only three relatively simple ideas.

Improvement is needed in two areas. First, it is hard to
keep the amplitudes of harmonics well-behavedly low and
simultaneously allow notes high on the neck of the guitar to
sound loudly; this is a tradeoff in the design of the lowpass
filter. Second, the bonk~ object, which was designed for
percussion instruments, should be tweaked in order to make
it work better for non-percussion instruments such as this
one.

7. REFERENCES
[1] M. Lebrun. A derivation of the spectrum of FM with a

complex modulating wave. Computer Music Journal,
1(4):51–52, 1977.

[2] M. S. Puckette. The Theory and Technique of

Electronic Music. World Scientific Press, Singapore,
2007. crca.ucsd.edu/~msp/techniques.htm

[3] T. Schouten. Complex wave shaping. In PD

Convention, 2003.
puredata.org/community/projects/convention04/

lectures/tk-Schouten/ComplexWaveshaping.pdf/

